Please wait a minute...
Frontiers of Chemistry in China

ISSN 1673-3495

ISSN 1673-3614(Online)

CN 11-5726/O6

Front Chem Chin    2011, Vol. 6 Issue (3) : 159-163    https://doi.org/10.1007/s11458-011-0248-3
RESEARCH ARTICLE
Mechanical behavior and wrinkling patterns of phase-separated binary polymer blend film
Xuezhe ZHAO, Shengwei DENG, Yongmin HUANG, Honglai LIU(), Ying HU
State Key Laboratory of Chemical Engineering and Department of Chemistry, East China University of Science and Technology, Shanghai 200237, China
 Download: PDF(378 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The wrinkling of phase-separated binary polymer blend film was studied through combining the Monte Carlo (MC) simulation for morphologies with the lattice spring model (LSM) for mechanical properties. The information of morphology and structure obtained by use of MC simulation is input to the LSM composed of a three-dimensional network of springs, which allows us to determine the wrinkling and the mechanical properties of polymer blend film, such as strain, stress, and Young’s modulus. The simulated results show that the wrinkling of phase-separated binary polymer blend film is related not only to the structure of morphology, but also to the disparity in elastic moduli between polymers of blend. Our simulation results provide fundamental insight into the relationship between morphology, wrinkling, and mechanical properties for phase-separated polymer blend films and can yield guidelines for formulating blends with the desired mechanical behavior. The wrinkling results also reveal that the stretching of the phase-separated film can form the micro-template, which has a wide application prospect.

Keywords polymer blend film      phase separation      mechanical property      wrinkling      lattice spring model     
Corresponding Author(s): LIU Honglai,Email:hlliu@ecust.edu.cn   
Issue Date: 05 September 2011
 Cite this article:   
Shengwei DENG,Yongmin HUANG,Xuezhe ZHAO, et al. Mechanical behavior and wrinkling patterns of phase-separated binary polymer blend film[J]. Front Chem Chin, 2011, 6(3): 159-163.
 URL:  
https://academic.hep.com.cn/fcc/EN/10.1007/s11458-011-0248-3
https://academic.hep.com.cn/fcc/EN/Y2011/V6/I3/159
Fig.1  Morphology (a), normal strain (b) and stress (c) field (at the surface = 10) for the film with = 0.3
Fig.2  Morphology (a), normal strain (a) and stress (b) field (at the surface = 10) for the film with = 0.7
Fig.3  The wrinkling of surfaces of polymer blend film with = 0.3 (a) and = 0.7 (b)
Fig.4  The wrinkling of surfaces of porous films obtained by removal of minority phases in the films with =0.3 (a) and =0.7 (b)
1 Stafford, C. M.; Harrison, C.; Beers, K. L.; Karim, A.; Amis, E. J.; VanLandingham, M. R.; Kim, H. C.; Volksen, W.; Miller, R. D.; Simonyi, E. E., Nat. Mater. 2004, 3, 545–550
doi: 10.1038/nmat1175 pmid:15247909
2 Huang, J.; Juszkiewicz, M.; de Jeu, W. H.; Cerda, E.; Emrick, T.; Menon, N.; Russell, T. P., Science 2007, 317, 650–653
doi: 10.1126/science.1144616 pmid:17673658
3 Nolte, A. J.; Cohen, R. E.; Rubner, M. F., Macromolecules 2006, 39, 4841–4847
doi: 10.1021/ma0606298
4 Aamer, K. A.; Stafford, C. M.; Richter, L. J.; Kohn, J.; Becker, M. L., Macromolecules 2009, 42, 1212–1218 21572899
doi: 10.1021/ma802115b
5 Bowden, N.; Brittain, S.; Evans, A. G.; Hutchinson, J. W.; Whitesides, G. M., Nature 1998, 393, 146–149
doi: 10.1038/30193
6 Chiche, A.; Stafford, C. M.; Cabral, J. T., Soft Matter 2008, 4, 2360–2364
doi: 10.1039/b811817e
7 Sun, Y.; Choi, W. M.; Jiang, H.; Huang, Y. Y.; Rogers, J. A., Nat. Nanotechnol. 2006, 1, 201–207
doi: 10.1038/nnano.2006.131 pmid:18654187
8 Khang, D. Y.; Jiang, H.; Huang, Y.; Rogers, J. A., Science 2006, 311, 208–212
doi: 10.1126/science.1121401 pmid:16357225
9 Hayward, R. C.; Chmelka, B. F.; Kramer, E. J., Macromolecules 2005, 38, 7768–7783
doi: 10.1021/ma0477854
10 Singamaneni, S.; Tsukruk, V. V., Soft Matter 2010, 6, 5681
doi: 10.1039/c0sm00374c
11 Tyagi, S.; Lee, J. Y.; Buxton, G. A.; Balazs, A. C., Macromolecules 2004, 37, 9160–9168
doi: 10.1021/ma048773l
12 Reiter, J.; Edling, T.; Pakula, T., J. Chem. Phys. 1990, 93, 837–844
doi: 10.1063/1.459453
13 Carmesin, I.; Kremer, K., Macromolecules 1988, 21, 2819–2823
doi: 10.1021/ma00187a030
14 Larson, R. G.; Scriven, L. E.; Davis, H. T. J., Chem. Phys. 1985, 83, 2411–2420
15 Larson, R. G., J. Chem. Phys. 1989, 91, 2479–2488
doi: 10.1063/1.457007
16 Buxton, G. A.; Care, C. M.; Cleaver, D. J., Model. Simul. Mater. Sci. Eng. 2001, 9, 485–497
doi: 10.1088/0965-0393/9/6/302
17 Buxton, G. A.; Balazs, A. C., Macromolecules 2005, 38, 488–500
doi: 10.1021/ma048470r
18 Shou, Z.; Buxton, G. A.; Balazs, A. C., Compos. Interfaces 2003, 10, 343–368
doi: 10.1163/156855403771953632
19 Buxton, G. A.; Balazs, A. C., Mol. Simul. 2004, 30, 249–257
doi: 10.1080/08927020310001659142
20 Ostoja-Starzewski, M.; Sheng, P. Y.; Jasuik, I., Eng. Fract. Mech. 1997, 58, 581–606
doi: 10.1016/S0013-7944(97)00046-5
[1] ZHANG Xiujuan, XU Yuanze, YI Xiaosu. Phase separation time/temperature dependence of some thermoplastics-modified thermosetting systems[J]. Front. Chem. China, 2008, 3(4): 471-479.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed