Please wait a minute...
Frontiers of Chemistry in China

ISSN 1673-3495

ISSN 1673-3614(Online)

CN 11-5726/O6

Front Chem Chin    2011, Vol. 6 Issue (3) : 206-212    https://doi.org/10.1007/s11458-011-0249-2
RESEARCH ARTICLE
Thin films of α-Fe2O3 nanoparticles using as nonmetallic SERS-active nanosensors for sub-micromolar detection
Xiaoqi FU1,2(), Shuang WANG2, Qian ZHAO2, Tingshun JIANG2, Hengbo YIN2
1. School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013, China; 2. School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
 Download: PDF(432 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A new kind of nonmetallic nanosensors based on surface-enhanced Raman spectroscopy (SERS) have been successfully prepared by the assembly of α-Fe2O3 nanoparticles (NPs) onto clean quartz surface via the cross-linker of hexamethylene diisocyanate (HDI). The resultant substrates have been characterized by electron micrographs, which show that the α-Fe2O3 NPs distribute on the modified surface uniformly with a monolayer or sub-monolayer structure. 4-mercaptopyridine (4-Mpy) and 2-mercaptobenzothiazole (2-MBT) molecules have been used as SERS probes to estimate the detection efficiency of the α-Fe2O3 thin films. The SERS experiments show that it is possible to record high quality SERS spectra from probe molecules on the α-Fe2O3 thin films at sub-micromolar (< 10-6 mol/L) concentration. These results indicate that the highly ordered, uniformly roughed, highly sensitive and low-cost α-Fe2O3 thin films are excellent candidates for nonmetallic SERS-active nanosensors.

Keywords nanosensors      SERS      α-Fe2O3 nanoparticles      thin film     
Corresponding Author(s): FU Xiaoqi,Email:xfu@ujs.edu.cn   
Issue Date: 05 September 2011
 Cite this article:   
Xiaoqi FU,Shuang WANG,Qian ZHAO, et al. Thin films of α-Fe2O3 nanoparticles using as nonmetallic SERS-active nanosensors for sub-micromolar detection[J]. Front Chem Chin, 2011, 6(3): 206-212.
 URL:  
https://academic.hep.com.cn/fcc/EN/10.1007/s11458-011-0249-2
https://academic.hep.com.cn/fcc/EN/Y2011/V6/I3/206
Fig.1  Schematic of the fabrication process for α-FeO thin films assembly
Fig.2  X-ray diffraction patterns of the resulting α-FeO particles: (a) 100 nm; (b) 65 nm; (c) 5 nm
Fig.3  TEM micrographs of α-FeO particles: (a) 100 nm; (b) 65 nm; (c) 5 nm
Fig.4  SEM micrographs of α-FeO nanoparticle thin films with samples of different sizes: (a) 100 nm; (b) 65 nm; (c) 5 nm
BulkSERSAssigmenta)
16161598νCC
15941579νCC
14711450νCC / νCN
1397νCC
12931321βCH
1243βCH
11991189βCH / δNH
11101150ring-breathing / νCS
10441021βCH
991997ring-breathing
903907γCH
785787γCH
720713βCC / νCS
644616βCCC
Tab.1  Raman frequencies (cm) and band assignments for 4-Mpy
Fig.5  SERS spectra of 4-Mpy adsorbed on α-FeO thin films with different size samples: (a) 100 nm; (b) 65 nm; (c) 5 nm; (d) normal Raman spectrum of bulk 4-Mpy; (e) Raman spectrum of the adsorbate-free surface
Fig.6  SERS spectra of 2-MBT adsorbed on α-FeO thin films with different size samples: (a) Sample 1, (b) Sample 2, (c) Sample 3; (d) normal Raman spectrum of bulk 2-MBT; (e) Raman spectrum of the adsorbate-free surface
Fig.7  SERS spectra from 4-Mpy at different concentrations adsorbed on the surface of α-FeO thin films: (a) 1 × 10 mol/L; (b) 1 × 10 mol/L; (c) 1 × 10 mol/L; (d) 1 × 10 mol/L; (e) 1 × 10 mol/L; (f) 1 × 10 mol/L; (g) 1 × 10 mol/L
1 Wang, Y.; Li, D.; Li, P.; Wang, W.; Ren, W.; Dong, S.; Wang, E., J. Phys. Chem. C 2007, 111, 16833-16839
doi: 10.1021/jp074519u
2 Sylvia, J. M.; Janni, J. A.; Klein, J. D.; Spencer, K. M., Anal. Chem. 2000, 72, 5834-5840
doi: 10.1021/ac0006573
3 Yonzon, C. R.; Stuart, D. A.; Zhang, X.; McFarland, A. D.; Haynes, C. L.; Van Duyne, R. P., Talanta 2005, 67, 438-448
doi: 10.1016/j.talanta.2005.06.039
4 Lucotti, A.; Pesapane, A.; Zerbi, G., Appl. Spectrosc. 2007, 61, 260-268
doi: 10.1366/000370207780220921
5 Wachter, E. A.; Storey, J. M. E.; Sharp, S. L.; Carron, K. T.; Jiang, Y., Appl. Spectrosc. 1995, 49, 193-199
doi: 10.1366/0003702953963779
6 Grabar, K. C.; Freeman, R. C.; Hommer, M. B.; Natan, M. J., Anal. Chem. 1995, 67, 735-743
doi: 10.1021/ac00100a008
7 Krenn, J. R.; Hohenau, A.; Leitner, A.; Aussenegg, F. R., J. Chem. Phys. 2004, 120, 15
doi: 10.1063/1.1650291
8 Freeman, R. G.; Grabar, K. C.; Allison, K. J.; Bright, R. M.; Davis, J. A.; Guthrie, A. P.; Hommer, M. B.; Jackson, M. A.; Smith, P. C.; Walter, D. G.; Natan, M. J., Science 1995, 267, 1629-1632
doi: 10.1126/science.267.5204.1629
9 Chumanov, G.; Sokolov, K.; Gregory, B. W.; Cotton, T. M., J. Phys. Chem. 1995, 99, 9466-9471
doi: 10.1021/j100023a025
10 Ulman, A., Chem. Rev. 1996, 96, 1533-1554
doi: 10.1021/cr9502357
11 Murty, K. V. G. K.; Venkataramanan, M.; Pradeep, T., Langmuir 1998, 14, 5446-5456
doi: 10.1021/la980249i
12 Felidj, N.; Truong, S. L.; Aubard, J.; Levi, G.; Krenn, J. R.; Hohenau, A.; Leitner, A.; Aussenegg, F. R., J. Chem. Phys. 2004, 120, 7141
doi: 10.1063/1.1676152
13 Tantra, R.; Brown, R. J. C.; Milton, M. J. T.; Gohil, D., Appl. Spectrosc. 2008, 62, 992-1000
doi: 10.1366/000370208785793272
14 Wang, Y.; Gan, L.; Chen, H.; Dong, S.; Wang, J., J. Phys. Chem. B 2006, 110, 20418-20425
doi: 10.1021/jp062422m
15 Zou, S.; Weaver, M. J., Anal. Chem. 1998, 70, 2387-2395
doi: 10.1021/ac9800154
16 Brankovic, S. R.; Wang, J. X.; Adzic, R. R., Surf. Sci. 2001, 474, L173-L179
doi: 10.1016/S0039-6028(00)01103-1
17 Wang, Z. L., Adv. Mater. (Deerfield Beach Fla.) 2003, 15, 432-436
doi: 10.1002/adma.200390100
18 Liu, A., Biosens. Bioelectron. 2008, 24, 167-177
doi: 10.1016/j.bios.2008.04.014
19 Yamada, H.; Yamamoto, Y., Surf. Sci. 1983, 134, 71-90
doi: 10.1016/0039-6028(83)90312-6
20 Loo, B. H., J. Electroanal. Chem. 1982, 136, 209-213
doi: 10.1016/0022-0728(82)87037-X
21 Kudelski, A.; Grochala, W.; Janik-Czachor, M.; Bukowska, J.; Szummer, A.; Dolata, M., J. Raman Spectrosc. 1998, 29, 431-435
doi: 10.1002/(SICI)1097-4555(199805)29:5&lt;431::AID-JRS260&gt;3.0.CO;2-S
22 Fu, X.; Pan, Y.; Wang, X.; Lombardi, J. R., J. Chem. Phys. 2011, 134, 024707
doi: 10.1063/1.3523646
23 Liu, Y. C.; Yu, C. C.; Wang, C. C.; Juang, L. C., Chem. Phys. Lett. 2006, 420, 245-249
doi: 10.1016/j.cplett.2005.12.085
24 Wang, X.; Chen, X.; Ma, X.; Zheng, H.; Ji, M.; Zhang, Z., Chem. Phys. Lett. 2004, 384, 391-393
doi: 10.1016/j.cplett.2003.12.074
25 Matijevic, E.; Scheiner, P., J. Colloid Interface Sci. 1978, 63, 509-524
doi: 10.1016/S0021-9797(78)80011-3
26 Fu, X. Q.; Bei, F. L.; Wang, X.; Yang, X. J.; Lu, L. D., J. Raman Spectrosc. 2009, 40, 1290-1295
doi: 10.1002/jrs.2281
27 Su, X.; Zhang, J.; Sun, L.; Koo, T. W.; Chan, S.; Sundararajan, N.; Yamakawa, M.; Berlin, A. A., Nano Lett. 2005, 5, 49-54
doi: 10.1021/nl0484088
28 Lee, S. J.; Morrill, A. R.; Moskovits, M., J. Am. Chem. Soc. 2006, 128, 2200-2201
doi: 10.1021/ja0578350
29 Wang, Y.; Zhang, J.; Jia, H.; Li, M.; Zeng, J.; Yang, B.; Zhao, B.; Xu, W.; Lombardi, J. R., J. Phys. Chem. C 2008, 112, 996-1000
doi: 10.1021/jp077467h
30 Lombardi, J. R.; Birke, R. L. J., PhysChemComm 2008, 112, 5605
31 Finkelstein-Shapiro, D.; Tarakeshwar, P.; Rajh, T.; Mujica, V., J. Phys. Chem. B 2010, 114, 14642-14645
doi: 10.1021/jp1023718
32 Baldwin, J. A.; Vlckova, B.; Andrews, M. P.; Butler, I. S., Langmuir 1997, 13, 3744-3751
doi: 10.1021/la960719d
33 Lim, J. S.; Choi, H.; Lim, I. S.; Park, S. B.; Lee, Y. S.; Kim, S. K., J. Phys. Chem. A 2009, 113, 10410-10416
doi: 10.1021/jp9076855
34 Lim, I. S.; Lim, J. S.; Lee, Y. S.; Kim, S. K., J. Chem. Phys. 2007, 126, 034306
doi: 10.1063/1.2424939
35 Moskovits, M., Rev. Mod. Phys. 1985, 57, 783-826
doi: 10.1103/RevModPhys.57.783
36 Moskovits, M., J. Chem. Phys. 1982, 77, 4408
doi: 10.1063/1.444442
37 Kalkar, A. K.; Bhossekar, N. M.; Kshirsagar, S. T., Spectrochim. Acta [A] 1989, 45A, 635-641
doi: 10.1016/0584-8539(89)80171-0
38 Muniz-Miranda, M.; Neto, N.; Sbrana, G., J. Phys. Chem. 1988, 92, 954-959
doi: 10.1021/j100315a019
39 Wang, Y. F.; Sun, Z. H.; Hu, H. L.; Jing, S. Y.; Zhao, B.; Xu, W. Q.; Zhao, C.; Lombardi, J. R., J. Raman Spectrosc. 2007, 38, 34-38
doi: 10.1002/jrs.1570
40 Park, H. K.; Yoon, J. K.; Kim, K., Langmuir 2006, 22, 1626-1629
doi: 10.1021/la052559o
[1] Shuping XU, Yu LIU, Haibo LI, Weiqing XU. Surface-enhanced Raman scattering (SERS) based on surface plasmon resonance coupling techniques[J]. Front Chem Chin, 2011, 6(4): 341-354.
[2] Xin WANG, Jiuyan LI, Di LIU, . Organic photovoltaic materials and thin-film solar cells[J]. Front. Chem. China, 2010, 5(1): 45-60.
[3] QIAO Congde, JI Xiangling, AN Lijia, JIANG Bingzheng, JIANG Shichun. Studies on confined crystallization behavior of polycaprolactone thin films[J]. Front. Chem. China, 2007, 2(4): 343-348.
[4] ZHU Wen, YANG Junyou, GAO Xianhui, HOU Jie, BAO Siqian, FAN Xian. Preparation of bismuth telluride thin film by electrochemical atomic layer epitaxy (ECALE)[J]. Front. Chem. China, 2007, 2(1): 102-106.
[5] Fa Wenjun, Li Ying, Gong Chuqing, Zhong Jiacheng. Photocatalytic Oxidation of Aniline in the Gas Phase Using Porous TiO2 Thin Films[J]. Front. Chem. China, 2006, 1(1): 63-67.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed