Please wait a minute...
Frontiers of Chemistry in China

ISSN 1673-3495

ISSN 1673-3614(Online)

CN 11-5726/O6

Front Chem Chin    2011, Vol. 6 Issue (4) : 280-286    https://doi.org/10.1007/s11458-011-0257-2
RESEARCH ARTICLE
Computational study of topological effects on intramolecular electron transfer in mixed-valence compounds
Yinxi YU, Haobin WANG()
Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces 88003, USA
 Download: PDF(247 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The constrained density functional theory (CDFT) was used to investigate the topological effects on intramolecular electron transfer processes that have been reported in previous experimental work [Inorg. Chem., 1997, 36 (22), pp 5037-5049]. The computation mainly focused on three isomers of diferrocenylbenzenes (ortho, para, and meta) and 5-substituted derivatives of m-diferrocencylbenzenes with R= NH2, Cl, CH3, CN, NO2, N(CH3)33+, and N2+. The influence of a third group R’ (R’ = NH2 and N2+) was introduced to the ortho and para isomers. The calculations were compared with the experimental results. The relation between the substituted functional groups and the effectiveness of intramolecular electron transfer was discussed on the basis of CDFT computational results.

Corresponding Author(s): WANG Haobin,Email:haobin@nmsu.edu   
Issue Date: 05 December 2011
 Cite this article:   
Yinxi YU,Haobin WANG. Computational study of topological effects on intramolecular electron transfer in mixed-valence compounds[J]. Front Chem Chin, 2011, 6(4): 280-286.
 URL:  
https://academic.hep.com.cn/fcc/EN/10.1007/s11458-011-0257-2
https://academic.hep.com.cn/fcc/EN/Y2011/V6/I4/280
Fig.1  Scheme 1 1o 1p 1m 2 3 4 5 6 7 8
Fig.2  Selected optimized molecular structures.(a) Molecular structure of 1o in Scheme 1;(b) Molecular structure of 3 in Scheme 1; (c) Molecular structure of 5 in Scheme 1
Internuclear C(Cp) –C(phenyl) bond distances ()
1oC(17)-C(22)1.48406C(4) –C(21)1.48406
3C(17)-C(22)1.47640C(4) –C(21)1.47665
5C(17)-C(22)1.47573C(4) –C(21)1.47619
Tab.1  Selected bond lengths and torsion angles
CompoundCDFT calculationExperimentala)Calculateda)
Gas phaseCH3CN solution
1o0.0280.0220.025±0.002
1p0.0780.0560.043±0.0010.0768
1m0.0130.0090.013±0.0010.0110
Tab.2  Experimental and theoretical couplings (eV) for three isomers
CompoundCDFT calculationExperimentala)Prev. calca)
Gas phaseCH3CN solution
1m0.0130.0090.013±0.0010.0110
20.0110.00880.011±0.0010.0079
30.0120.00740.011±0.0010.0107
40.0080.00990.015±0.0010.0108
50.0090.00630.012±0.0020.0117
60.0060.00450.013±0.0020.0122
70.0100.00720.012±0.0020.0113
80.0060.0006--
Tab.3  Experimental and theoretical couplings (eV) for 1m family
Fig.3  Scheme 2 1o(1) 1o(2) 1o(3) 1o(4) 1p(1) 1p(2)
CompoundCDFT calculationExperimentala)Prev. calc.a)
Gas phaseCH3CN solution
1m0.0130.0090.013±0.0010.0110
20.0110.00880.011±0.0010.0079
80.0060.0006--
1o0.0280.0220.025±0.002-
1o(1)0.0180.0142--
1o(2)0.0270.0205--
1o(3)0.0250.0193--
1o(4)0.0060.1274--
1p0.0780.0560.043±0.0010.0768
1p(1)0.0680.0486--
1p(2)0.0150.0110--
Tab.4  Experimental and theoretical couplings (eV) for three isomers and their derivatives
1 Hush, N. S., Coord. Chem. Rev. 1985, 64, 135-157
doi: 10.1016/0010-8545(85)80047-3
2 Prassides, K., Mixed valency systems: applications in chemistry, physics, and biology ; Kluwer Academic Publishers: Dordrecht; Boston, 1991
3 Crutchley, R. J., Adv. Inorg. Chem. 1994, 41, 273-325
doi: 10.1016/S0898-8838(08)60174-9
4 Astruc, D., Electron transfer and radical processes in transition-metal chemistry ; VCH: New York, N.Y., 1995
5 Ward, M. D., Chem. Soc. Rev. 1995, 24, 121-134
doi: 10.1039/cs9952400121
6 Allen, G. C.; Hush, N. S., In Progress in Inorganic Chemistry ; Cotton, F. A., Ed. 2007, p 357-389
7 Ceccon, A.; Santi, S.; Orian, L.; Bisello, A., Coord. Chem. Rev. 2004, 248, 683-724
doi: 10.1016/j.ccr.2004.02.007
8 Shu, P.; Bechgaard, K.; Cowan, D. O., J. Org. Chem. 1976, 41, 1849-1852
doi: 10.1021/jo00872a036
9 Engtrakul, C.; Sita, L. R., Nano Lett. 2001, 1, 541-549
doi: 10.1021/nl010038p
10 Low, P. J.; Roberts, R. L.; Cordiner, R. L.; Hartl, F., J. Solid State Electrochem. 2005, 9, 717-731
doi: 10.1007/s10008-005-0693-3
11 Robin, M. B.; Day, P., Advances in Inorganic Chemistry and Radiochemistry 1967, 10, 247-422
doi: 10.1016/S0065-2792(08)60179-X
12 Cowan, D. O.; Levanda, C.; Park, J.; Kaufman, F., Acc. Chem. Res. 1973, 6, 1-7
doi: 10.1021/ar50061a001
13 Day, P.; Hush, N. S.; Clark, R. J. H.,Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences 2008, 366, 5-14
14 Gamelin, D. R.; Bominaar, E. L.; Mathoniere, C.; Kirk, M. L.; Wieghardt, K.; Girerd, J. J.; Solomon, E. I., Inorg. Chem. 1996, 35, 4323-4335
doi: 10.1021/ic960413u
15 Williams, R. D.; Petrov, V. I.; Lu, H. P.; Hupp, J. T., J. Phys. Chem. A 1997, 101, 8070-8076
doi: 10.1021/jp9633308
16 Brunschwig, B. S.; Creutz, C.; Sutin, N., Chem. Soc. Rev. 2002, 31, 168-184
doi: 10.1039/b008034i
17 Sun, H.; Steeb, J.; Kaifer, A. E., J. Am. Chem. Soc. 2006, 128, 2820-2821
doi: 10.1021/ja060386z
18 Concepcion, J. J.; Dattelbaum, D. M.; Meyer, T. J.; Rocha, R. C.,Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences 2008, 366, 163-175
19 Osella, D.; Gobetto, R.; Nervi, C.; Ravera, M.; D'Amato, R.; Russo, M. V., Inorg. Chem. Commun. 1998, 1, 239-245
doi: 10.1016/S1387-7003(98)00064-1
20 Burgess, M. R.; Jing, S.; Morley, C. P., J. Organomet. Chem. 2006, 691, 3484-3489
doi: 10.1016/j.jorganchem.2006.04.035
21 Wedeking, K.; Mu, Z. C.; Kehr, G.; Sierra, J. C.; Lichtenfeld, C. M.; Grimme, S.; Erker, G.; Frohlich, R.; Chi, L. F.; Wang, W. C.; Zhong, D. Y.; Fuchs, H., Chemistry-a European Journal 2006, 12, 1618-1628
doi: 10.1002/chem.200500552
22 Ferguson, G.; Glidewell, C.; Opromolla, G.; Zakaria, C. M.; Zanello, P., J. Organomet. Chem. 1996, 517, 183-190
doi: 10.1016/0022-328X(96)06199-2
23 Arisandy, C.; Fullam, E.; Barlow, S., J. Organomet. Chem. 2006, 691, 3285-3292
doi: 10.1016/j.jorganchem.2006.04.002
24 Morrison, W. H.; Krogsrud, S.; Hendrick, D. N., Inorg. Chem. 1973, 12, 1998-2004
doi: 10.1021/ic50127a009
25 Nishihara, H., Bull. Chem. Soc. Jpn. 2001, 74, 19-29
doi: 10.1246/bcsj.74.19
26 Ding, F. Z.; Wang, H. B.; Wu, Q.; Van Voorhis, T.; Chen, S. W.; Konopelski, J. P., J. Phys. Chem. A 2010, 114, 6039-6046
doi: 10.1021/jp912049p
27 Patoux, C.; Coudret, C.; Launay, J. P.; Joachim, C.; Gourdon, A., Inorg. Chem. 1997, 36, 5037-5049
doi: 10.1021/ic970013m
28 Dederichs, P. H.; Blugel, S.; Zeller, R.; Akai, H., Phys. Rev. Lett. 1984, 53, 2512-2515
doi: 10.1103/PhysRevLett.53.2512
29 Wu, Q.; Van Voorhis, T., Phys. Rev. A 2005, 72, 024502
doi: 10.1103/PhysRevA.72.024502
30 Wu, Q.; Van Voorhis, T., J. Chem. Theory Comput. 2006, 2, 765-774
doi: 10.1021/ct0503163
31 Behler, J.; Delley, B.; Lorenz, S.; Reuter, K.; Scheffler, M., Phys. Rev. Lett. 2005, 94, 036104-1
doi: 10.1103/PhysRevLett.94.036104
32 Behler, J.; Delley, B.; Reuter, K.; Scheffler, M., Phys. Rev. B 2007, 75, 115409-1
doi: 10.1103/PhysRevB.75.115409
33 Schmidt, J. R.; Shenvi, N.; Tully, J. C., J. Chem. Phys. 2008, 129, 114110-114111
doi: 10.1063/1.2978168
34 Oberhofer, H.; Blumberger, J., J. Chem. Phys. 2009, 131, 064101-1
doi: 10.1063/1.3190169
35 Wu, Q.; Van Voorhis, T., J. Chem. Phys. 2006, 125, 164105
doi: 10.1063/1.2360263
36 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A. Jr; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A., Gaussian, Inc.: Wallingford, CT 2004
37 Bylaska, E. J.; de Jong, W. A.; Kowalski, K.; Straatsma, T. P.; Valiev, M.; Wang, D.; Aprà, E.; Windus, T. L.; Hirata, S.; Hackler, M. T.; Zhao, Y.; Fan, P.D.; Harrison, R. J.; Dupuis, M.; Smith, D. M. A.; Nieplocha, J.; Tipparaju, V.; Krishnan, M.; Auer, A. A.; Nooijen, M.; Brown, E.; Cisneros, G.; Fann, G. I.; Früchtl, H.; Garza, J.; Hirao, K.; Kendall, R.; Nichols, J.; Tsemekhman, K.; Wolinski, K.; Anchell, J.; Bernholdt, D.; Borowski, P.; Clark, T.; Clerc, D.; Dachsel, H.; Deegan, M.; Dyall, K.; Elwood, D.; Glendening, E.; Gutowski, M.; Hess, A.; Jaffe, J.; Johnson, B.; Ju, J.; Kobayashi, R.; Kutteh, R.; Lin, Z.; Littlefield, R.; Long, X.; Meng, B.; Nakajima, T.; Niu, S.; Rosing, M.; Sandrone, G.; Stave, M.; Taylor, H.; Thomas, G.; van Lenthe, J.; Wong, A.; Zhang, Z., Pacific Northwest National Laboratory, Richland, Washington 99352-0999 USA 2006
38 Becke, A. D., J. Chem. Phys. 1993, 98, 5648-5652
doi: 10.1063/1.464913
39 Lee, C. T.; Yang, W. T.; Parr, R. G., Phys. Rev. B 1988, 37, 785-789
doi: 10.1103/PhysRevB.37.785
40 Francl, M. M.; Pietro, W. J.; Hehre, W. J.; Binkley, J. S.; Gordon, M. S.; Defrees, D. J.; Pople, J. A., J. Chem. Phys. 1982, 77, 3654-3665
doi: 10.1063/1.444267
41 Klamt, A.; Schuurmann, G., Journal of the Chemical Society-Perkin Transactions 1993, 2, 799-805
42 Lowdin, P. O., J. Chem. Phys. 1950, 18, 365-375
doi: 10.1063/1.1747632
43 Mayer, I., Int. J. Quantum Chem. 2002, 90, 63-65
doi: 10.1002/qua.981
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed