Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

邮发代号 80-970

2019 Impact Factor: 1.275

Frontiers of Computer Science in China  2009, Vol. 3 Issue (1): 31-37   https://doi.org/10.1007/s11704-009-0008-4
  RESEARCH ARTICLE 本期目录
Monitoring of particle swarm optimization
Monitoring of particle swarm optimization
Yuhui SHI1(), Russ EBERHART2
1. Department of Electrical and Electronic Engineering, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China; 2. Department of Electrical and Computer Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
 全文: PDF(462 KB)   HTML
Abstract

In this paper, several diversity measurements will be discussed and defined. As in other evolutionary algorithms, first the population position diversity will be discussed followed by the discussion and definition of population velocity diversity which is different from that in other evolutionary algorithms since only PSO has the velocity parameter. Furthermore, a diversity measurement called cognitive diversity is discussed and defined, which can reveal clustering information about where the current population of particles intends to move towards. The diversity of the current population of particles and the cognitive diversity together tell what the convergence/divergence stage the current population of particles is at and which stage it moves towards.

Key wordsparticle swarm optimization    population diversity    cognitive diversity
收稿日期: 2008-08-11      出版日期: 2009-03-05
Corresponding Author(s): SHI Yuhui,Email:Yuhui.Shi@xjtlu.edu.cn   
 引用本文:   
. Monitoring of particle swarm optimization[J]. Frontiers of Computer Science in China, 2009, 3(1): 31-37.
Yuhui SHI, Russ EBERHART. Monitoring of particle swarm optimization. Front Comput Sci Chin, 2009, 3(1): 31-37.
 链接本文:  
https://academic.hep.com.cn/fcs/CN/10.1007/s11704-009-0008-4
https://academic.hep.com.cn/fcs/CN/Y2009/V3/I1/31
1 Eberhart R, Kennedy J. A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micro Machine and Human Science . Piscataway: IEEE Service Center, 1995, 39-43
2 Kennedy J, Eberhart R. Particle swarm optimization. In: Procedings of IEEE International Conference on Neural Networks (ICNN) , 1995, IV: 1942-1948
3 Eberhart R, Shi Y H. Comparison between genetic algorithms and particle swarm optimization. In: Porto V W, Saravanan N, Waagen D, Eiben A E, eds. Evolutionary Programming VII: Proceedings of 7th Annual Conference on Evolutionary Programming . Berlin: Springer-Verlag, 1998, 611-616
4 Eberhart R, Shi Y H. Computational Intelligence: Concepts to Implementations. Morgan Kaufmann Publishers, 2007
5 Kennedy J, Eberhart R, Shi Y H. Swarm Intelligence. Morgan Kaufmann Publishers, 2001
6 Shi Y H, Eberhart R. Parameter selection in particle swarm optimization. In: Proceedings of the 1998 Annual Conference on Evolutionary Computation , 1998, 591-600
7 Shi Y H, Eberhart R. A modified particle swarm optimizer. In: Proceedings of the 1998 IEEE International Conference on Evolutionary Computation . Piscataway: IEEE Press, 1998, 69-73
8 Shi Y H, Eberhart R, Chen Y B. Implementation of evolutionary fuzzy system. IEEE Transactions on Fuzzy Systems , 1999, 7(2): 109-119
doi: 10.1109/91.755393
9 Shi Y H, Eberhart R. Fuzzy adaptive particle swarm optimization, In: Proceedings of the 2001 Congress on Evolutionary Computation . Piscataway: IEEE Service Center, 2001, 101-106
10 Shi Y H, Eberhart R. Population diversity of particle swarm optimization. In: Proceedings of the 2008 Congress on Evolutionary Computation , 2008, 1063-1067
11 Fan H Y, Shi Y H. Study on Vmax of particle swarm optimization. In: Proceedings of the Workshop on Particle Swarm Optimization . Indianapolis: Purdue School of Engineering and Technology, IUPUI. April, 2001
12 Ratnaweera A, Halgamuge S, Watson H. Self-organizing hierarchical particle swarm optimizer with time varying accelerating Coefficients. IEEE Transactions on Evolutionary Computation , 2004, 8(3): 240-255
doi: 10.1109/TEVC.2004.826071
13 Kennedy J, Mendes R. Population structure and particle swarm performance. In: Proceedings of the 2002 Congress on Evolutionary Computation . Honolulu, 2002
14 Mendes R, Kennedy J, Neves J. The fully informed particle swarm: simpler, maybe better. IEEE Transactions on Evolutionary Computation , 2004, 8(3): 204–210
doi: 10.1109/TEVC.2004.826074
15 Parsopoulos K E, Vrahatis M N. Particle swarm optimization method for constrained optimization problems. In: Sincak P, , eds. Intelligent Technologies – Theory and Application , 2002, 214-220
16 Reyes-Sierra M, Coello Coello C A. Multi-objective particle swarm optimizers: a survey of the state-of-the-art. International Journal of Computational Intelligence Research , 2006, 2(3): 287-308
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed