Abstract:Shorter total interconnect and fewer switches in a processor array definitely lead to less capacitance, power dissipation and dynamic communication cost between the processing elements. This paper presents an algorithm to find a maximum logical array (MLA) that has shorter interconnect and fewer switches in a reconfigurable VLSI array with hard/soft faults. The proposed algorithm initially generates the middle ([k/2]th) logical column and then makes it nearly straight for the MLA with k logical columns. A dynamic programming approach is presented to compact other logical columns toward the middle logical column, resulting in a tightly-coupled MLA. In addition, the lower bound of the interconnect length of the MLA is proposed. Experimental results show that the resultant logical array is nearly optimal for the host array with large fault size, according to the proposed lower bound.
Negrini R, Sami M G, Stefanelli R. Fault tolerancethrough reconfiguration in VLSI and WSI arrays. The MIT Press, 1989
Mangir T E, Avizienis A. Fault-tolerant design forVLSI: effect of interconnection requirements on yield improvementof VLSI design. IEEE Trans. on Computers, 1982, 31(7): 609―615 doi: 10.1109/TC.1982.1676058
Greene J W, Gamal A E. Configuration of VLSI arrayin the presence of defects. J. ACM, 1984, 31(4): 694―717 doi: 10.1145/1634.2377
Sami M, Stefanelli R. Reconfigurable architecturesfor VLSI processing array. Proceedingsof the IEEE, 1986, 74(5): 712―722 doi: 10.1109/PROC.1986.13533
Negrini R, Sami M G, Stefanelli R. Fault Tolerance Through Reconfiguration in VLSI and WSIarrays. The MIT Press, 1989
Lam C W H, Li H F, Jakakumar R. A study of two approaches for reconfiguring fault-tolerantsystoric array. IEEE Trans. on Computers, 1989, 38(6): 833–844 doi: 10.1109/12.24292
Koren I, Singh A D.Fault tolerance in VLSI circuits. Computer, 1990, 23(7): 73―83 doi: 10.1109/2.56854
Chen Y Y, Upadhyaya S J, Cheng C H. A comprehensive reconfiguration scheme for fault-tolerantVLSI/WSI array processors. IEEE Trans.on Computers, 1997, 46(12): 1363―1371 doi: 10.1109/12.641936
Kuo S Y, Fuchs W K. Efficient spare allocationfor reconfigurable arrays. IEEE Designand Test, 1987, 4(7): 24―31 doi: 10.1109/MDT.1987.295111
Wey C L, Lombardi F. On the repair of redundantRAM’s. IEEE Trans. on Computer-AidedDesign, 1987, CAD-6(2): 222―231
Tsuda N. Reconfigurablemesh-connected processor arrays using rowcolumn bypassing and directreplacement. In: Proceedings of InternationalSymposium on Parallel Architectures, Algorithms and Networks. I-SPAN 2000, 24―29
Takanami I. Built-inself-reconfiguring systems for fault tolerant mesh-connected processorarrays by direct spare replacement. In:Proceedings of IEEE International Workshop on Defect and Fault Tolerancein VLSI Systems, 2001, 134―142
Kuo S Y, Chen I Y. Efficient reconfigurationalgorithms for degradable VLSI/WSI arrays. IEEE Trans. on Computer-Aided Design, 1992, 11(10): 1289―1300 doi: 10.1109/43.170991
Low C P, Leong H W. On the reconfiguration ofdegradable VLSI/WSI arrays. IEEE Trans.on Computer-Aided Design of integrated circuits and systems, 1997, 16(10): 1213―1221
Low C P. An efficient reconfiguration algorithm for degradable VLSI/WSI arrays. IEEE Trans. on Computers, 2000, 49(6): 553―559 doi: 10.1109/12.862215
Wu J G, Srikanthan T. Accelerating reconfigurationof degradable VLSI arrays. IEE Proceedings,Circuits, Devices and Systems, 2006, 153(4): 383―389 doi: 10.1049/ip-cds:20045103
Fukushi M, Fukushima Y, Horiguchi S. A genetic approach for the reconfiguration of degradableprocessor arrays. In: Proceedings of 20thIEEE International Symposium on Defect and Fault Tolerance in VLSISystems, 2005, 63―71
Wu J G, Srikanthan T. Reconfiguration Algorithmsfor Power Efficient VLSI subarrays with 4-port Switches. IEEE Trans. on Computers, 2006, 55(3): 243―253 doi: 10.1109/TC.2006.43
Wu J G, Srikanthan T. Integrated row and columnre-routing for reconfiguration of VLSI arrays with 4-port switches. IEEE Trans. on Computers, 2007, 56(10): 1387―1400 doi: 10.1109/TC.2007.1085