Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

邮发代号 80-970

2019 Impact Factor: 1.275

Frontiers of Computer Science in China  0, Vol. Issue (): 353-368   https://doi.org/10.1007/s11704-011-0369-3
  REVIEW ARTICLE 本期目录
Green challenges to system software in data centers
Green challenges to system software in data centers
Yuzhong SUN1(), Yiqiang ZHAO1, Ying SONG1, Yajun YANG1,2, Haifeng FANG1,2, Hongyong ZANG1,2, Yaqiong LI1,2, Yunwei GAO1
1. Key Laboratory of Computer System and Architecture, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China; 2. Graduate University of Chinese Academy of Sciences, Beijing 100190, China
 全文: PDF(735 KB)   HTML
Abstract

With the increasing demand and the wide application of high performance commodity multi-core processors, both the quantity and scale of data centers grow dramatically and they bring heavy energy consumption. Researchers and engineers have applied much effort to reducing hardware energy consumption, but software is the true consumer of power and another key in making better use of energy. System software is critical to better energy utilization, because it is not only the manager of hardware but also the bridge and platform between applications and hardware. In this paper, we summarize some trends that can affect the efficiency of data centers. Meanwhile, we investigate the causes of software inefficiency. Based on these studies, major technical challenges and corresponding possible solutions to attain green system software in programmability, scalability, efficiency and software architecture are discussed. Finally, some of our research progress on trusted energy efficient system software is briefly introduced.

Key wordsgreen software    multi-core    data center    power efficient system software
收稿日期: 2010-03-31      出版日期: 2011-09-05
Corresponding Author(s): SUN Yuzhong,Email:yuzhongsun@ict.ac.cn   
 引用本文:   
. Green challenges to system software in data centers[J]. Frontiers of Computer Science in China, 0, (): 353-368.
Yuzhong SUN, Yiqiang ZHAO, Ying SONG, Yajun YANG, Haifeng FANG, Hongyong ZANG, Yaqiong LI, Yunwei GAO. Green challenges to system software in data centers. Front Comput Sci Chin, 0, (): 353-368.
 链接本文:  
https://academic.hep.com.cn/fcs/CN/10.1007/s11704-011-0369-3
https://academic.hep.com.cn/fcs/CN/Y0/V/I/353
Fig.1  
Fig.2  
End use component2000 /billion kWhTotal/%2006 /billion kWhTotal/%2000-2006 CAGR

Compound annual growth rate

/%
Site infrastructure14.15030.75014
Network equipment1.453.0514
Storage1.143.2520
High-end servers1.141.525
Mid-range servers2.592.24-2
Volume servers8.02920.93417
Total28.261.414
Tab.1  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
ResIntervalThresholdImpDeg
Ref [32]CPU10sFixed28%41%
TRainbowCPU, mem1s(CPU), 5s(mem)Auto adjusted19%2%
Tab.2  
Fig.9  
InputOutput
λwλdBMN
8502000.4342
12503300.4363
17004000.4384
21005000.43105
Tab.3  
Fig.10  
Fig.11  
Fig.12  
1 Poess M, Nambiar R O. Energy cost, the key challenge of today's data centers: a power consumption analysis of TPC-C results. Proceedings of the VLDB Endowment , 2008, 1(2): 1229-1240
2 Wirth N. A plea for lean software. Computer , 1995, 28(2): 64-68
doi: 10.1109/2.348001
3 Owens J D, Luebke D, Govindaraju N, Harris M, Krüger J, Lefohn A E, Purcell T J. A survey of general-purpose computation on graphics hardware. In: Proceedings of 2005 Annual Conference of the European Association for Computer Graphics . 2005, 21-51
4 Foster I, Zhao Y, Raicu I, Lu S. Cloud computing and grid computing 360-degree compared. In: Proceedings of 2008 Grid Computing Environments Workshop . 2008, 1-10
5 Kogge P, Bergman K, Borkar S, Campbell D, Carlson W, Dally W, Denneau M, Franzon P, Harrod W, Hill K, Hiller J, Karp S, Keckler S, Klein D, Lucas R, Richards M, Scarpelli A, Scot S, Snavely A, Sterling T, Williams R S, Yelick K.Exascale computing study: technology challenges in achieving exascale systems. DARPA Report . 2008.
6 Moore G E. Progress in digital integrated electronics. In: Proceedings of IEEE Digital Integrated Electronic Device Meeting . 1975, 11-13
7 Kish L B. End of Moore’s law: thermal (noise) death of integration in micro and nano electronics. Physics Letters A , 2002, 305(3-4): 144-149
doi: 10.1016/S0375-9601(02)01365-8
8 Lloyd S. Ultimate physical limits to computation. Nature , 2000, 406(6799): 1047-1054
doi: 10.1038/35023282 pmid:10984064
9 Manferdelli J. Supercomputing and mass market desktops. ACM Super Computing , 2007
10 Seiler L, Carmean D, Sprangle E, Forsyth T, Abrash M, Dubey P, Junkins S, Lake A, Suqerman J, Cavin R, Espasa R, Grochowski E, Juan T, Hanrahan P. Larrabee: a many-core x86 architecture for visual computing. ACM Transactions on Graphics , 2008, 27(3): 1-15
doi: 10.1145/1360612.1360617
11 Geer D. Chip makers turn to multicore processors. Computer , 2005, 38(5): 11-13
doi: 10.1109/MC.2005.160
12 Environmental Protection Agency. EPA report to Congress on server and data center energy efficiency. 2007, http://www.energystar.gov/ia/partners/prod_development/downloads/EPA_Datacenter_Report_Congress_Final1.pdf
13 Brown D J, Reams C. Toward energy-efficient computing. Communications of the ACM , 2010, 53(3): 50-58
doi: 10.1145/1666420.1666438
14 Kant K. Data center evolution: a tutorial on state of the art, issues, and challenges. Computer Networks , 2009, 53(17): 2939-2965
doi: 10.1016/j.comnet.2009.10.004
15 Dally W J, Balfour J, Black-Shaffer D, Chen J, Harting R C, Parikh V, Park J, Sheffield D. Efficient embedded computing. Computer , 2008, 41(7): 27-32
doi: 10.1109/MC.2008.224
16 Chu S. The energy problem and Lawrence Berkeley National Laboratory. Talk given to the California Air Resources Board . 2008
17 Brown D, Furber S. A conversation with Steve Furber. ACM Queue: Tomorrow's Computing Today , 2010, 8(2): 1-8
doi: 10.1145/1716383.1716385
18 Saxe E. Power-efficient software. Communications of the ACM , 2010, 53(2): 44-48
doi: 10.1145/1646353.1646370
19 Chamberlain B L, Callahan D, Zima H P. Parallel programmability and the Chapel language. International Journal of High Performance Computing Applications , 2007, 21(3): 291-312
doi: 10.1177/1094342007078442
20 Dean J, Ghemawat S. MapReduce: simplified data processing on large clusters. Communications of the ACM , 2008, 51(1): 107-113
doi: 10.1145/1327452.1327492
21 Fatahalian K, Horn D R, Knight T J, Leem L, Houston M, Park J Y, Erez M, Ren M, Aiken A, Dally W J, Hanrahan P. Sequoia: programming the memory hierarchy. In: Proceedings of 2006 ACM/IEEE Conference on Supercomputing . 2006
22 Hoisie A, Getov V. Extreme-scale computing-where ‘just more of the same’ does not work. Computer , 2009, 42(11): 24-26
doi: 10.1109/MC.2009.354
23 Torrellas J. Architectures for extreme-scale computing. Computer , 2009, 42(11): 28-35
doi: 10.1109/MC.2009.341
24 Barker K J, Davis K, Hoisie A, Kerbyson D J, Lang M, Pakin S, Sancho J C. Using performance modeling to design large-scale systems. Computer , 2009, 42(11): 42-49
doi: 10.1109/MC.2009.372
25 Chase J S, Anderson D C, Thakar P N, Vahdat A M, Doyle R P. Managing energy and server resources in hosting centers. In: Proceedings of 18th ACM Symposium on Operating Systems Principles . 2001, 103-116
26 Zeng H, Ellis C S, Lebeck A R, Vahdat A. ECOSystem: managing energy as a first class operating system resource. In: Proceedings of 10th International Conference on Architectural Support for Programming Languages and Operating Systems . 2002, 123-132
27 Song Y, Zhang Y W, Sun Y Z, Shi W S. Utility analysis for internet-oriented server consolidation in VM-based data centers. In: Proceedings of 2009 IEEE International Conference on Cluster Computing . 2009, 1-10
28 Padala P, Hou K Y, Shin K G, Zhu X, Uysal M, Wang Z, Singhal S, Merchant A. Automated control of multiple virtualized resources. In: Proceedings of 4th ACM European conference on Computer systems . 2009, 13-26
29 Elnozahy M, Kistler M, Rajamony R. Energy conservation policies for web servers. In: Proceedings of the 4th USENIX Symposium on Internet Technologies and Systems . 2003, 99-112
30 Song Y, Wang H, Li Y Q, Feng B Q, Sun Y Z. Multi-tiered on-demand resource scheduling for VM-based data center. In: Proceedings of 9th IEEE/ACM International Symposium on Cluster Computing and the Grid . 2009, 148-155
31 Song Y, Li Y Q, Wang H, Zhang Y F, Feng B Q, Zang H Y, Sun Y Z. A service-oriented priority-based resource scheduling scheme for virtualized utility computing. In: Proceedings of 15th International Conference on High Performance Computing . 2008, 220-231
32 Padala P, Shin K, Zhu X, Uysal M, Wang Z, Singhal S, Merchant A, Salem K. Adaptive control of virtualized resources in utility computing environments. In: Proceedings of 2nd ACM SIGOPS/EuroSys European Conference on Computer Systems . 2007, 289-302
33 Sun Y Z, Fang H F, Song Y, Du L, Zhang K, Zang H Y, Li Y Q, Yang Y J, Ao R, Huang Y B, Gao Y W. TRainbow: a new trusted virtual machine based platform. Frontiers of Computer Science in China , 2010, 4(1): 47-64
doi: 10.1007/s11704-009-0076-5
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed