Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

邮发代号 80-970

2019 Impact Factor: 1.275

Frontiers of Computer Science  2013, Vol. 7 Issue (3): 350-358   https://doi.org/10.1007/s11704-013-2061-2
  RESEARCH ARTICLE 本期目录
Reversible spiking neural P systems
Reversible spiking neural P systems
Tao SONG, Xiaolong SHI, Jinbang XU()
Key Laboratory of Image Processing and Intelligent Control, Department of Control Science and Engineering, Huazhong University of Science and Technology,Wuhan 430074, China
 全文: PDF(356 KB)   HTML
Abstract

Spiking neural (SN) P systems are a class of distributed parallel computing devices inspired by the way neurons communicate by means of spikes. In this work, we investigate reversibility in SN P systems, as well as the computing power of reversible SN P systems. Reversible SN P systems are proved to have Turing creativity, that is, they can compute any recursively enumerable set of non-negative integers by simulating universal reversible register machine.

Key wordsmembrane computing    spiking neural P system    reversible computing model    universality    reversible register machine
收稿日期: 2012-05-03      出版日期: 2013-06-01
Corresponding Author(s): XU Jinbang,Email:jbxuhust@gmail.com   
 引用本文:   
. Reversible spiking neural P systems[J]. Frontiers of Computer Science, 2013, 7(3): 350-358.
Tao SONG, Xiaolong SHI, Jinbang XU. Reversible spiking neural P systems. Front Comput Sci, 2013, 7(3): 350-358.
 链接本文:  
https://academic.hep.com.cn/fcs/CN/10.1007/s11704-013-2061-2
https://academic.hep.com.cn/fcs/CN/Y2013/V7/I3/350
1 Landauer R. Irreversibility and heat generation in the computing process. IBM Journal of Research and Development , 1961, 5(3): 183-191
doi: 10.1147/rd.53.0183
2 Von Neumann J. Theory of self-reproducing automata. University of Illinois Press , 1966
3 Bennett C. Logical reversibility of computation. IBM Journal of Research and Development , 1973, 17(6): 525-532
doi: 10.1147/rd.176.0525
4 Morita K, Yamaguchi Y. A universal reversible turing machine. In: Proceedings of the 5th International Conference on Machines, Computations, and Universality . 2007, 90-98
doi: 10.1007/978-3-540-74593-8_8
5 Priese L. On a simple combinatorial structure sufficient for sublying nontrival self-reproduction. Journal of Cybernetics , 1976, 6: 101-137
doi: 10.1080/01969727608927527
6 Fredkin E, Toffoli T. Conservative logic. International Journal of Theoretical Physics , 1982, 21(3): 219-253
doi: 10.1007/BF01857727
7 Toffoli T, Margolus N. Invertible cellular automata: a review. Physica D: Nonlinear Phenomena, 1990, 45(1): 229-253
8 Morita K. Universality of a reversible two-counter machine. Theoretical Computer Science , 1996, 168(2): 303-320
doi: 10.1016/S0304-3975(96)00081-3
9 Leporati A, Zandron C, Mauri G. Reversible P systems to simulate fredkin circuits. Fundamenta Informaticae , 2006, 74(4): 529-548
10 Alhazov A, Morita K. On reversibility and determinism in p systems. In: Proceedings of the 10th International Conference on Membrane Computing . 2009, 158-168
11 P?aun G. Computing with membranes. Journal of Computer and System Sciences , 2000, 61(1): 108-143
doi: 10.1006/jcss.1999.1693
12 Ionescu M, P?un G, Yokomori T. Spiking neural P systems. Fundamenta informaticae , 2006, 71(2): 279-308
13 P?un G, MARIO J, Rozenberg G. Spike trains in spiking neural P systems. International Journal of Foundations of Computer Science , 2006, 17(4): 975-1002
doi: 10.1142/S0129054106004212
14 Chen H, Freund R, Ionescu M, Pă un G, Pérez-Jiménez M. On string languages generated by spiking neural P systems. Fundamenta Informaticae , 2007, 75(1): 141-162
15 Zhang X, Zeng X, Pan L. On string languages generated by spiking neural P systems with exhaustive use of rules. Natural Computing , 2008, 7(4): 535-549
doi: 10.1007/s11047-008-9079-7
16 P?un A, P?un G. Small universal spiking neural P systems. BioSystems , 2007, 90(1): 48-60
doi: 10.1016/j.biosystems.2006.06.006
17 Pan L, Zeng X. Small universal spiking neural P systems working in exhaustive mode. IEEE Transactions on NanoBioscience , 2011, 10(2): 99-105
doi: 10.1109/TNB.2011.2160281
18 Ishdorj T, Leporati A, Pan L, Zeng X, Zhang X. Deterministic solutions to QSAT and Q3SAT by spiking neural P systems with precomputed resources. Theoretical Computer Science , 2010, 411(25): 2345-2358
doi: 10.1016/j.tcs.2010.01.019
19 Pan L, P?un G, Pérez-Jiménez M. Spiking neural P systems with neuron division and budding. Science China Information Sciences , 2011, 54(8): 1596-1607
doi: 10.1007/s11432-011-4303-y
20 Zeng X, Zhang X, Pan L. Homogeneous spiking neural P systems. Fundamenta Informaticae , 2009, 97(1): 275-294
21 Wang J, Hoogeboom H, Pan L, Paun G, Pérez-Jiménez M. Spiking neural P systems with weights. Neural Computation , 2010, 22(10): 2615-2646
doi: 10.1162/NECO_a_00022
22 Pan L, Zeng X, Zhang X. Time-free spiking neural P systems. Neural Computation , 2011, 23(5): 1320-1342
doi: 10.1162/NECO_a_00115
23 Pan L, Wang J, Hoogeboom H. Spiking neural P systems with astrocytes. Neural Computation , 2012, 24(3): 805-825
doi: 10.1162/NECO_a_00238
24 Rozenberg G. Handbook of formal languages: word, language, grammar. Springer Verlag , 1997
25 P?un G. Membrane computing: an introduction. Fundamentals of Computation Theory , 2003, 177-220
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed