ECG beat classification using particle swarm optimization and support vector machine
Ali KHAZAEE1,*(),A. E. ZADEH2
1. Department of Electrical Engineering, Bojnourd Branch, Islamic Azad University, Bojnourd 9417694686, Iran 2. Faculty of Electrical and Computer Engineering, Babol University of Technology, Bobol 4714871167, Iran
In this paper, we propose a novel ECG arrhythmia classification method using power spectral-based features and support vector machine (SVM) classifier. The method extracts electrocardiogram’s spectral and three timing interval features. Non-parametric power spectral density (PSD) estimation methods are used to extract spectral features. The proposed approach optimizes the relevant parameters of SVM classifier through an intelligent algorithm using particle swarm optimization (PSO). These parameters are: Gaussian radial basis function (GRBF) kernel parameter σ and C penalty parameter of SVM classifier. ECG records from the MIT-BIH arrhythmia database are selected as test data. It is observed that the proposed power spectral-based hybrid particle swarm optimization-support vector machine (SVMPSO) classification method offers significantly improved performance over the SVM which has constant and manually extracted parameter.
. [J]. Frontiers of Computer Science, 2014, 8(2): 217-231.
Ali KHAZAEE,A. E. ZADEH. ECG beat classification using particle swarm optimization and support vector machine. Front. Comput. Sci., 2014, 8(2): 217-231.
CliffordG D, AzuajeF, McSharryP. Advanced Methods and Tools for ECG Data Analysis. Artech House London, 2006
2
SandoeE, SigurdB. Arrhythmia: A Guide to Clinical Electrocar Diology. Publishing Partners, 1991
3
ShyuL Y, WuY H, HuW. Using wavelet transform and fuzzy neural network for VPC detection from the holter ECG. IEEE Transactions on Biomedical Engineering, 2004, 51(7): 1269-1273 doi: 10.1109/TBME.2004.824131
4
InanO T, GiovangrandiL, KovacsG T. Robust neural-network-based classification of premature ventricular contractions using wavelet transform and timing interval features. IEEE Transactions on Biomedical Engineering, 2006, 53(12): 2507-2515 doi: 10.1109/TBME.2006.880879
5
EbrahimzadehA, KhazaeeA. Detection of premature ventricular contractions using MLP neural networks: a comparative study. Measurement, 2010, 43(1): 103-112 doi: 10.1016/j.measurement.2009.07.002
6
ZadehA E, KhazaeeA. High efficient system for automatic classification of the electrocardiogram beats. Annals of Biomedical Engineering, 2011, 39(3): 996-1011 doi: 10.1007/s10439-010-0229-6
7
InceT, KiranyazS, GabboujM. A generic and robust system for automated patient-specific classification of ECG signals. IEEE Transactions on Biomedical Engineering, 2009, 56(5): 1415-1426 doi: 10.1109/TBME.2009.2013934
8
KhazaeeA, EbrahimzadehA. Heart arrhythmia detection using support vector machines. Intelligent Automation & Soft Computing, 2013, 19(1): 1-9 doi: 10.1080/10798587.2013.771456
9
LinC H. Frequency-domain features for ECG beat discrimination using grey relational analysis-based classifier. Computers &Mathematics with Applications, 2008, 55(4): 680-690 doi: 10.1016/j.camwa.2007.04.035
10
ZeraatkarE, KermaniS, MehridehnaviA, AminzadehA, ZeraatkarE, SaneiH. Arrhythmia detection based on morphological and timefrequency features of t-wave in electrocardiogram. Journal of Medical Signals and Sensors, 2011, 1(2): 99-106
11
KaurM, AroraA. Classification of ECG signals using LDA with factor analysis method as feature reduction technique. Journal of Medical Engineering & Technology, 2012, 36(8): 411-420 doi: 10.3109/03091902.2012.702851
12
Derya ÜbeyliE. Recurrent neural networks employing lyapunov exponents for analysis of ECG signals. Expert Systems with Applications, 2010, 37(2): 1192-1199 doi: 10.1016/j.eswa.2009.06.022
13
De ChazalP, O’DwyerM, ReillyR B. Automatic classification of heartbeats using ECG morphology and heartbeat interval features. IEEE Transactions on Biomedical Engineering, 2004, 51(7): 1196-1206 doi: 10.1109/TBME.2004.827359
14
YeC, BhagavatulaV, CoimbraM. Heartbeat classification using morphological and dynamic features of ECG signals. IEEE Transactions on Biomedical Engineering, 2004, 59(10): 2930-2941
15
LlamedoM, MartnezJ P. Án automatic patient-adapted ECG heartbeat classifier allowing expert assistance. IEEE Transactions on Biomedical Engineering, 2012, 59(8): 2312-2320 doi: 10.1109/TBME.2012.2202662
16
AndreãoR V, DorizziB, BoudyJ. ECG signal analysis through hidden markov models. IEEE Transactions on Biomedical Engineering, 2006, 53(8): 1541-1549 doi: 10.1109/TBME.2006.877103
17
MartisR J, ChakrabortyC, RayA K. A two-stage mechanism for registration and classification of ECG using gaussian mixture model. Pattern Recognition, 2009, 42(11): 2979-2988 doi: 10.1016/j.patcog.2009.02.008
18
MitraS, MitraM, ChaudhuriB B. A rough-set-based inference engine for ECG classification. IEEE Transactions on Instrumentation and Measurement, 2006, 55(6): 2198-2206 doi: 10.1109/TIM.2006.884279
19
Chazald P, ReillyR B. A patient-adapting heartbeat classifier using ECG morphology and heartbeat interval features. IEEE Transactions on Biomedical Engineering, 2006, 53(12): 2535-2543 doi: 10.1109/TBME.2006.883802
20
OsowskiS, MarkiewiczT, HoaiL T. Recognition and classification system of arrhythmia using ensemble of neural networks. Measurement, 2008, 41(6): 610-617 doi: 10.1016/j.measurement.2007.07.006
21
VapnikV N. Statistical Learning Theory. Wiley, 1998
22
VaseghiS V. Advanced Digital Signal Processing and Noise Reduction. Wiley, 2008 doi: 10.1002/9780470740156
23
WelchP. The use of fast fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Transactions on Audio and Electroacoustics, 1967, 15(2): 70-73 doi: 10.1109/TAU.1967.1161901
24
PercivalD, WaldenA. Spectral Analysis for Physical Applications: Multitaper and Conventional Univariate Techniques. New York: Cambridge University Press, 1993 doi: 10.1017/CBO9780511622762
25
BurgesC J. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 1998, 2(2): 121-167 doi: 10.1023/A:1009715923555
MullerK R, MikaS, RatschG, TsudaK, ScholkopfB. An introduction to kernel-based learning algorithms. IEEE Transactions on Neural Networks, 2001, 12(2): 181-201 doi: 10.1109/72.914517
28
EberhartR, KennedyJ. A new optimizer using particle swarm theory. In: Proceedings of the 6th International Symposium on Micro Machine and Human Science. 1995, 39-43 doi: 10.1109/MHS.1995.494215
29
ShiY, EberhartR C. Empirical study of particle swarm optimization. In: Proceedings of the 1999 Congress on Evolutionary Computation. 1999, 1945-1950
30
MoodyG B, MarkR G. MIT-BIH arrhythmia database, http://ecg.mit.edu/dbinfo.html
31
MoodyG B, MarkR G. The impact of the mit-bih arrhythmia database. IEEE Engineering in Medicine and Biology Magazine, 2001, 20(3): 45-50 doi: 10.1109/51.932724
LuanF, ZhangX, ZhangH, ZhangR, LiuM, HuZ, FanB. QSPR study of permeability coefficients through low-density polyethylene based on radial basis function neural networks and the heuristic method. Computational materials science, 2006, 37(4): 454-461 doi: 10.1016/j.commatsci.2005.11.003
34
RumelhartD E, McClellandJ L. Parallel Distributed Processing: Explorations in the Microstructure of Cognition. MIT Press, 1986
35
RiedmillerM, BraunH. A direct adaptive method for faster backpropagation learning: the RPROP algorithm. In: Proceedings of the 1993 IEEE International Conference on Neural Networks. 1993, 586-591 doi: 10.1109/ICNN.1993.298623
36
HaganM T, MenhajM B. Training feedforward networks with the marquardt algorithm. IEEE Transactions on Neural Networks, 1994, 5(6): 989-993 doi: 10.1109/72.329697