Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

邮发代号 80-970

2019 Impact Factor: 1.275

Frontiers of Computer Science  2014, Vol. 8 Issue (2): 217-231   https://doi.org/10.1007/s11704-014-2398-1
  本期目录
ECG beat classification using particle swarm optimization and support vector machine
Ali KHAZAEE1,*(),A. E. ZADEH2
1. Department of Electrical Engineering, Bojnourd Branch, Islamic Azad University, Bojnourd 9417694686, Iran
2. Faculty of Electrical and Computer Engineering, Babol University of Technology, Bobol 4714871167, Iran
 全文: PDF(563 KB)  
Abstract

In this paper, we propose a novel ECG arrhythmia classification method using power spectral-based features and support vector machine (SVM) classifier. The method extracts electrocardiogram’s spectral and three timing interval features. Non-parametric power spectral density (PSD) estimation methods are used to extract spectral features. The proposed approach optimizes the relevant parameters of SVM classifier through an intelligent algorithm using particle swarm optimization (PSO). These parameters are: Gaussian radial basis function (GRBF) kernel parameter σ and C penalty parameter of SVM classifier. ECG records from the MIT-BIH arrhythmia database are selected as test data. It is observed that the proposed power spectral-based hybrid particle swarm optimization-support vector machine (SVMPSO) classification method offers significantly improved performance over the SVM which has constant and manually extracted parameter.

Key wordsECG arrhythmia classification    SVM    PSO    optimization    PSD
收稿日期: 2012-12-23      出版日期: 2014-06-24
Corresponding Author(s): Ali KHAZAEE   
 引用本文:   
. [J]. Frontiers of Computer Science, 2014, 8(2): 217-231.
Ali KHAZAEE,A. E. ZADEH. ECG beat classification using particle swarm optimization and support vector machine. Front. Comput. Sci., 2014, 8(2): 217-231.
 链接本文:  
https://academic.hep.com.cn/fcs/CN/10.1007/s11704-014-2398-1
https://academic.hep.com.cn/fcs/CN/Y2014/V8/I2/217
1 CliffordG D, AzuajeF, McSharryP. Advanced Methods and Tools for ECG Data Analysis. Artech House London, 2006
2 SandoeE, SigurdB. Arrhythmia: A Guide to Clinical Electrocar Diology. Publishing Partners, 1991
3 ShyuL Y, WuY H, HuW. Using wavelet transform and fuzzy neural network for VPC detection from the holter ECG. IEEE Transactions on Biomedical Engineering, 2004, 51(7): 1269-1273
doi: 10.1109/TBME.2004.824131
4 InanO T, GiovangrandiL, KovacsG T. Robust neural-network-based classification of premature ventricular contractions using wavelet transform and timing interval features. IEEE Transactions on Biomedical Engineering, 2006, 53(12): 2507-2515
doi: 10.1109/TBME.2006.880879
5 EbrahimzadehA, KhazaeeA. Detection of premature ventricular contractions using MLP neural networks: a comparative study. Measurement, 2010, 43(1): 103-112
doi: 10.1016/j.measurement.2009.07.002
6 ZadehA E, KhazaeeA. High efficient system for automatic classification of the electrocardiogram beats. Annals of Biomedical Engineering, 2011, 39(3): 996-1011
doi: 10.1007/s10439-010-0229-6
7 InceT, KiranyazS, GabboujM. A generic and robust system for automated patient-specific classification of ECG signals. IEEE Transactions on Biomedical Engineering, 2009, 56(5): 1415-1426
doi: 10.1109/TBME.2009.2013934
8 KhazaeeA, EbrahimzadehA. Heart arrhythmia detection using support vector machines. Intelligent Automation & Soft Computing, 2013, 19(1): 1-9
doi: 10.1080/10798587.2013.771456
9 LinC H. Frequency-domain features for ECG beat discrimination using grey relational analysis-based classifier. Computers &Mathematics with Applications, 2008, 55(4): 680-690
doi: 10.1016/j.camwa.2007.04.035
10 ZeraatkarE, KermaniS, MehridehnaviA, AminzadehA, ZeraatkarE, SaneiH. Arrhythmia detection based on morphological and timefrequency features of t-wave in electrocardiogram. Journal of Medical Signals and Sensors, 2011, 1(2): 99-106
11 KaurM, AroraA. Classification of ECG signals using LDA with factor analysis method as feature reduction technique. Journal of Medical Engineering & Technology, 2012, 36(8): 411-420
doi: 10.3109/03091902.2012.702851
12 Derya ÜbeyliE. Recurrent neural networks employing lyapunov exponents for analysis of ECG signals. Expert Systems with Applications, 2010, 37(2): 1192-1199
doi: 10.1016/j.eswa.2009.06.022
13 De ChazalP, O’DwyerM, ReillyR B. Automatic classification of heartbeats using ECG morphology and heartbeat interval features. IEEE Transactions on Biomedical Engineering, 2004, 51(7): 1196-1206
doi: 10.1109/TBME.2004.827359
14 YeC, BhagavatulaV, CoimbraM. Heartbeat classification using morphological and dynamic features of ECG signals. IEEE Transactions on Biomedical Engineering, 2004, 59(10): 2930-2941
15 LlamedoM, MartnezJ P. Án automatic patient-adapted ECG heartbeat classifier allowing expert assistance. IEEE Transactions on Biomedical Engineering, 2012, 59(8): 2312-2320
doi: 10.1109/TBME.2012.2202662
16 AndreãoR V, DorizziB, BoudyJ. ECG signal analysis through hidden markov models. IEEE Transactions on Biomedical Engineering, 2006, 53(8): 1541-1549
doi: 10.1109/TBME.2006.877103
17 MartisR J, ChakrabortyC, RayA K. A two-stage mechanism for registration and classification of ECG using gaussian mixture model. Pattern Recognition, 2009, 42(11): 2979-2988
doi: 10.1016/j.patcog.2009.02.008
18 MitraS, MitraM, ChaudhuriB B. A rough-set-based inference engine for ECG classification. IEEE Transactions on Instrumentation and Measurement, 2006, 55(6): 2198-2206
doi: 10.1109/TIM.2006.884279
19 Chazald P, ReillyR B. A patient-adapting heartbeat classifier using ECG morphology and heartbeat interval features. IEEE Transactions on Biomedical Engineering, 2006, 53(12): 2535-2543
doi: 10.1109/TBME.2006.883802
20 OsowskiS, MarkiewiczT, HoaiL T. Recognition and classification system of arrhythmia using ensemble of neural networks. Measurement, 2008, 41(6): 610-617
doi: 10.1016/j.measurement.2007.07.006
21 VapnikV N. Statistical Learning Theory. Wiley, 1998
22 VaseghiS V. Advanced Digital Signal Processing and Noise Reduction. Wiley, 2008
doi: 10.1002/9780470740156
23 WelchP. The use of fast fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Transactions on Audio and Electroacoustics, 1967, 15(2): 70-73
doi: 10.1109/TAU.1967.1161901
24 PercivalD, WaldenA. Spectral Analysis for Physical Applications: Multitaper and Conventional Univariate Techniques. New York: Cambridge University Press, 1993
doi: 10.1017/CBO9780511622762
25 BurgesC J. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 1998, 2(2): 121-167
doi: 10.1023/A:1009715923555
26 CortesC, VapnikV. Support-vector networks. Machine Learning, 1995, 20(3): 273-297
doi: 10.1007/BF00994018
27 MullerK R, MikaS, RatschG, TsudaK, ScholkopfB. An introduction to kernel-based learning algorithms. IEEE Transactions on Neural Networks, 2001, 12(2): 181-201
doi: 10.1109/72.914517
28 EberhartR, KennedyJ. A new optimizer using particle swarm theory. In: Proceedings of the 6th International Symposium on Micro Machine and Human Science. 1995, 39-43
doi: 10.1109/MHS.1995.494215
29 ShiY, EberhartR C. Empirical study of particle swarm optimization. In: Proceedings of the 1999 Congress on Evolutionary Computation. 1999, 1945-1950
30 MoodyG B, MarkR G. MIT-BIH arrhythmia database, http://ecg.mit.edu/dbinfo.html
31 MoodyG B, MarkR G. The impact of the mit-bih arrhythmia database. IEEE Engineering in Medicine and Biology Magazine, 2001, 20(3): 45-50
doi: 10.1109/51.932724
32 SpechtD F. Probabilistic neural networks. Neural Networks, 1990, 3(1): 109-118
doi: 10.1016/0893-6080(90)90049-Q
33 LuanF, ZhangX, ZhangH, ZhangR, LiuM, HuZ, FanB. QSPR study of permeability coefficients through low-density polyethylene based on radial basis function neural networks and the heuristic method. Computational materials science, 2006, 37(4): 454-461
doi: 10.1016/j.commatsci.2005.11.003
34 RumelhartD E, McClellandJ L. Parallel Distributed Processing: Explorations in the Microstructure of Cognition. MIT Press, 1986
35 RiedmillerM, BraunH. A direct adaptive method for faster backpropagation learning: the RPROP algorithm. In: Proceedings of the 1993 IEEE International Conference on Neural Networks. 1993, 586-591
doi: 10.1109/ICNN.1993.298623
36 HaganM T, MenhajM B. Training feedforward networks with the marquardt algorithm. IEEE Transactions on Neural Networks, 1994, 5(6): 989-993
doi: 10.1109/72.329697
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed