Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

邮发代号 80-970

2019 Impact Factor: 1.275

Frontiers of Computer Science  2015, Vol. 9 Issue (6): 980-989   https://doi.org/10.1007/s11704-015-3482-x
  本期目录
Video structural description technology for the new generation video surveillance systems
Chuanping HU,Zheng XU(),Yunhuai LIU,Lin MEI
The Third Research Institute of the Ministry of Public Security, Shanghai 200031, China
 全文: PDF(611 KB)  
Abstract

The increasing need of video based applications issues the importance of parsing and organizing the content in videos. However, the accurate understanding and managing video contents at the semantic level is still insufficient. The semantic gap between low level features and high level semantics cannot be bridged by manual or semi-automatic methods. In this paper, a semantic based model named video structural description (VSD) for representing and organizing the content in videos is proposed. Video structural description aims at parsing video content into the text information, which uses spatiotemporal segmentation, feature selection, object recognition, and semantic web technology. The proposed model uses the predefined ontologies including concepts and their semantic relations to represent the contents in videos. The defined ontologies can be used to retrieve and organize videos unambiguously. In addition, besides the defined ontologies, the semantic relations between the videos are mined. The video resources are linked and organized by their related semantic relations.

Key wordsvideo structural description    video content extraction    video resources management    domain ontology
收稿日期: 2013-12-04      出版日期: 2015-11-10
Corresponding Author(s): Zheng XU   
 引用本文:   
. [J]. Frontiers of Computer Science, 2015, 9(6): 980-989.
Chuanping HU,Zheng XU,Yunhuai LIU,Lin MEI. Video structural description technology for the new generation video surveillance systems. Front. Comput. Sci., 2015, 9(6): 980-989.
 链接本文:  
https://academic.hep.com.cn/fcs/CN/10.1007/s11704-015-3482-x
https://academic.hep.com.cn/fcs/CN/Y2015/V9/I6/980
1 Xu Z, Liu Y, Mei L, Hu C, Chen L. Semantic based representing and organizing surveillance big data using video structural description technology. Journal of Systems and Software, 2015, 102: 217−225
https://doi.org/10.1016/j.jss.2014.07.024
2 Hu C, Xu Z, Liu Y, Mei L, Chen L, Luo X. Semantic link networkbased model for organizing multimedia big data. IEEE Transactions on Emerging Topics in Computing, 2014, 2(3): 376−387
https://doi.org/10.1109/TETC.2014.2316525
3 Wu L, Wang Y. The process of criminal investigation based on grey hazy set. In: Proceedings of IEEE International Conference on System Man and Cybernetics. 2010, 26−28
4 Liu L, Li Z, Delp E J. Efficient and low-complexity surveillance video compression using backward-channel aware Wyner-Ziv video coding. IEEE Transactions on Circuits and Systems for Video Technology, 2009, 19(4): 452−465
5 Zhang J, Zulkernine M, Haque A. Random-forests-based network intrusion detection systems. IEEE Transactions on Systems, Man, and Cybernetics (Part C: Applications and Reviews), 2008, 38(5): 649−659
https://doi.org/10.1109/TSMCC.2008.923876
6 Yu H Q, Pedrinaci C, Dietze S, Domingue J. Using linked data to annotate and search educational video resources for supporting distance learning. IEEE Transactions on Learning Technologies, 2012, 5(2): 130−142
https://doi.org/10.1109/TLT.2012.1
7 Xu C, Zhang Y F, Zhu G, Rui Y, Lu H, Huang Q. Using webcast text for semantic event detection in broadcast sports video. IEEE Transactions on Multimedia, 2008, 10(7): 1342−1355
https://doi.org/10.1109/TMM.2008.2004912
8 Berners-Lee T, Hendler J, Lassila O. The semantic web. Scientific American, 2001, 284(5): 34−43
https://doi.org/10.1038/scientificamerican0501-34
9 Ma H, Zhu J, Lyu M R T, King I. Bridging the semantic gap between image contents and tags. IEEE Transactions on Multimedia, 2010, 12(5): 462−473
https://doi.org/10.1109/TMM.2010.2051360
10 Chen H T, Ahuja N. Exploiting nonlocal spatiotemporal structure for video segmentation. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2012, 741−748
11 Javed K, Babri H, Saeed M. Feature selection based on class-dependent densities for high-dimensional binary data. IEEE Transactions on Knowledge and Data Engineering, 2012, 24(3): 465−477
https://doi.org/10.1109/TKDE.2010.263
12 Choi M, Torralba A, Willsky A. A Tree-based context model for object recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(2): 240−252
https://doi.org/10.1109/TPAMI.2011.119
13 Luo X, Xu Z, Yu J, Chen X. Building association link network for semantic link on web resources. IEEE transactions on automation science and engineering, 2011, 8(3): 482−494
https://doi.org/10.1109/TASE.2010.2094608
14 Xu Z, Luo X, Wang L. Incremental building association link network. Computer Systems Science and Engineering, 2011, 26(3): 153−162
15 Liu Y, Zhu Y, Ni L M, Xue G. A reliability-oriented transmission service in wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 2011, 22(12): 2100−2107
https://doi.org/10.1109/TPDS.2011.113
16 Liu Y, Zhang Q, Ni L M. Opportunity-based topology control in wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 2010, 21(3): 405−416
https://doi.org/10.1109/TPDS.2009.57
17 Donderler M, Saykol E, Arslan U, Ulusoy O, Gudukbay U. Bilvideo: design and implementation of a video database management system. Multimedia Tools Applications, 2005, 27(1): 79−104
https://doi.org/10.1007/s11042-005-2715-7
18 Sevilmis T, Bastan M, Gudukbay U, Ulusoy O. Automatic detection of salient objects and spatial relations in videos for a video database system. Image Vision Computing, 2008, 26(10): 1384−1396
https://doi.org/10.1016/j.imavis.2008.01.001
19 Fan J, Aref W G, Elmagarmid A K, Hacid M S, Marzouk M S, Zhu X. Multiview: multilevel video content representation and retrieval. Journal of Electronic Imaging, 2001, 10(4): 895−908
https://doi.org/10.1117/1.1406944
20 Fan J, Elmagarmid A K, Zhu X, Aref W G, Wu L. Classview: hierarchical video shot classification, indexing, and accessing. IEEE Transactions on Multimedia, 2004, 6(1): 70−86
https://doi.org/10.1109/TMM.2003.819583
21 Bai L, Lao S, Jones G J, Smeaton A F. Video semantic content analysis based on ontology. In: Proceedings of the 11th International Machine Vision and Image Processing Conference. 2007, 117−124
https://doi.org/10.1109/imvip.2007.13
22 Nevatia R, Natarajan P. EDF: a framework for semantic annotation of video. In: Proceedings of the 10th IEEE International Conference on Computer Vision Workshops. 2005, 1876
23 Bagdanov A D, Bertini M, Del Bimbo A, Torniai C, Serra G. Semantic annotation and retrieval of video events using multimedia ontologies. In: Proceedings of IEEE International Conference on Semantic Computing. 2007, 713−720
https://doi.org/10.1109/icsc.2007.30
24 Francois A R, Nevatia R, Hobbs J, Bolles R, Smith J R. VERL: an ontology framework for representing and annotating video events. IEEE Multimedia, 2005, 12(4): 76−86
https://doi.org/10.1109/MMUL.2005.87
25 Akdemir U, Turaga P, Chellappa R. An ontology based approach for activity recognition from video. In: Proceedings of the ACM International Conference on Multimedia. 2008, 709−712
https://doi.org/10.1145/1459359.1459466
26 Marszalek M, Schmid C. Semantic hierarchies for visual object recognition. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2007, 1−7
https://doi.org/10.1109/cvpr.2007.383272
27 Deng J, Dong W, Socher R, Li L J, Li K, Fei-Fei L. Imagenet: a largescale hierarchical image database. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2009, 248−255
28 Yao B, Yang X, Lin L, Lee M W, Zhu S C. I2t: image parsing to text description. Proceedings of the IEEE, 2010, 98(8): 1485−1508
https://doi.org/10.1109/JPROC.2010.2050411
29 Felzenszwalb P, McAllester D, Ramanan D. A discriminatively trained, multiscale, deformable part model. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2008, 1−8
https://doi.org/10.1109/cvpr.2008.4587597
30 Felzenszwalb P, Girshick R, McAllester D, Ramanan D. Object detection with discriminatively trained part based models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(9): 1627−1645
https://doi.org/10.1109/TPAMI.2009.167
31 Felzenszwalb P F, Girshick R B, McAllester D. Cascade object detection with deformable part models. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2010, 2241−2248
https://doi.org/10.1109/cvpr.2010.5539906
32 Chen N, Zhou Q Y, and Prasanna V. Understanding web image by object relation network. In: Proceedings of the 21st International Conference on World Wide Web. 2012, 291−300
https://doi.org/10.1145/2187836.2187876
33 Kulkarni G, Premraj V, Dhar S, Li S, Choi Y, Berg A C, Berg T L. Baby talk: understanding and generating image descriptions. In: Proceedings of the 24th IEEE Conference on Computer Vision and Pattern Recognition. 2011
https://doi.org/10.1109/cvpr.2011.5995466
34 Qi G J, Aggarwal C, Huang T. Towards semantic knowledge propagation from text corpus to web images. In: Proceedings of the 20th International Conference on World Wide Web. 2011, 297−306
https://doi.org/10.1145/1963405.1963449
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed