Visual object tracking—classical and contemporary approaches
Ahmad ALI1,Abdul JALIL1,Jianwei NIU2,*(),Xiaoke ZHAO2,Saima RATHORE1,Javed AHMED3,Muhammad AKSAM IFTIKHAR4
1. Department of Computer and Information Sciences, Pakistan Institute of Engineering & Applied Sciences, Islamabad 44000, Pakistan 2. State Key Laboratory of Virtual Reality Technology and Systems, School of Computer Science and Engineering, Beihang University, Beijing 100191, China 3. Department of Electrical (Telecom) Engineering, NUST Military College of Signals, Islamabad 44000, Pakistan 4. COMSATS Institute of Information Technology, Lahore 54000, Pakistan
Visual object tracking (VOT) is an important subfield of computer vision. It has widespread application domains,and has been considered as an important part of surveillance and security system. VOA facilitates finding the position of target in image coordinates of video frames.While doing this, VOA also faces many challenges such as noise, clutter, occlusion, rapid change in object appearances, highly maneuvered (complex) object motion, illumination changes. In recent years, VOT has made significant progress due to availability of low-cost high-quality video cameras as well as fast computational resources, and many modern techniques have been proposed to handle the challenges faced by VOT.This article introduces the readers to 1) VOT and its applications in other domains, 2) different issues which arise in it, 3) various classical as well as contemporary approaches for object tracking, 4) evaluation methodologies for VOT, and 5) online resources, i.e., annotated datasets and source code available for various tracking techniques.
Ta D N, Chen WC, Gelfand N, Pulli K. Surftrac: efficient tracking and continuous object recognition using local feature descriptors. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.2009, 2937–2944
2
Skrypnyk I, Lowe D G. Scene modelling, recognition and tracking with invariant image features. In: Proceedings of IEEE and ACM International Symposium on Mixed and Augmented Reality. 2004, 110–119
https://doi.org/10.1109/ISMAR.2004.53
3
Chau D P, Bremond F, Thonnat M. Object tracking in videos: approaches and issues. 2013, arXiv preprint arXiv: 1304.5212
4
Ko T. A survey on behavior analysis in video surveillance for homeland security applications. In: Proceedings of the 37th IEEE Applied Imagery Pattern Recognition Workshop. 2008, 1–8
https://doi.org/10.1109/aipr.2008.4906450
5
Ess A, Schindler K, Leibe B, Van Gool L. Object detection and tracking for autonomous navigation in dynamic environments. The International Journal of Robotics Research, 2010, 29: 1707–1725
https://doi.org/10.1177/0278364910365417
6
Mistry P, Maes P. SixthSense: a wearable gestural interface. In: Proceedings of ACM SIGGRAPH ASIA 2009 Sketches. 2009, 11
https://doi.org/10.1145/1667146.1667160
7
Bradski G R. Real time face and object tracking as a component of a perceptual user interface. In: Proceedings of the 4th IEEE Workshop on Applications of Computer Vision. 1998, 214–219
https://doi.org/10.1109/acv.1998.732882
8
Zhu Z, Ji Q. Eye gaze tracking under natural head movements. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2005, 918–923
9
Kim I, Choi H S, Yi K M, Choi J Y, Kong S G. Intelligent visual surveillance — a survey. International Journal of Control, Automation and Systems, 2010, 8(5): 926–939
https://doi.org/10.1007/s12555-010-0501-4
10
Siemens S. Sistore CX EDS-intelligent video detection system. Technical Report. 2008
11
Collins R, Lipton A, Kanade T, Tolliver E. A system for video surveillance and monitoring. Technical Report CMU-RI-TR-00-12. 2000
12
Haritaoglu I, Harwood D, Davis L S. W4: real-time surveillance of people and their activities. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8): 809–830
https://doi.org/10.1109/34.868683
13
Kettnaker V, Zabih R. Bayesian multi-camera surveillance. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 1999, 242–259
https://doi.org/10.1109/cvpr.1999.784638
14
Hu W, Tan T, Wang L, Maybank S. A survey on visual surveillance of object motion and behaviors. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 2004, 34(3): 334–352
https://doi.org/10.1109/TSMCC.2004.829274
15
Collins R T, Lipton A J, Fujiyoshi H, Kanade T. Algorithms for cooperative multisensor surveillance. Proceedings of the IEEE, 2001, 89(10): 1456–1477
https://doi.org/10.1109/5.959341
16
Greiffenhagen M, Comaniciu D, Niemann H, Ramesh V. Design, analysis, and engineering of video monitoring systems: an approach and a case study. Proceedings of the IEEE, 2001, 89(10): 1498–1517
https://doi.org/10.1109/5.959343
17
Kumar R, Sawhney H, Samarasekera S, Hsu S, Tao H, Guo Y, Hanna K, Pope A, Wildes R, Hirvonen D, Hansen M, Burt P. Aerial video surveillance and exploitation. Proceedings of the IEEE, 2001, 89(10):1518–1539
https://doi.org/10.1109/5.959344
18
Coifman B, Beymer D, McLauchlan P, Malik J. A real-time computer vision system for vehicle tracking and traffic surveillance. Transporta tion Research Part C: Emerging Technologies, 1998, 6(4): 271–288
https://doi.org/10.1016/S0968-090X(98)00019-9
19
Tai J C, Tseng S T, Lin C P, Song K T. Real-time image tracking for automatic traffic monitoring and enforcement applications. Image and Vision Computing, 2004, 22(6): 485–501
https://doi.org/10.1016/j.imavis.2003.12.001
20
Masoud O, Papanikolopoulos N P. A novel method for tracking and counting pedestrians in real-time using a single camera. IEEE Transactions on Vehicular Technology, 2001, 50(5): 1267–1278
https://doi.org/10.1109/25.950328
21
Papanikolopoulos N P, Khosla P K. Adaptive robotic visual tracking:theory and experiments. IEEE Transactions on Automatic Control, 1993, 38(3): 429–445
https://doi.org/10.1109/9.210141
22
Sakagami Y, Watanabe R, Aoyama C, Matsunaga S, Higaki N, Fujimura K. The intelligent asimo: system overview and integration.In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. 2002, 2478–2483
https://doi.org/10.1109/IRDS.2002.1041641
23
Mondragon I F, Campoy P, Correa J F, Mejias L. Visual model feature tracking for UAV control. In: Proceedings of IEEE International Symposium on Intelligent Signal Processing. 2007, 1–6
https://doi.org/10.1109/wisp.2007.4447629
24
Lee J, Huang R, Vaughn A, Xiao X, Hedrick J K, Zennaro M, Sengupta R. Strategies of path-planning for a UAV to track a ground vehicle. In:Proceedings of Annual Autonomous Intelligent Networks and Systems Conference. 2003
25
Handmann U, Kalinkea T, Tzomakas C, Werner M, von Seelen W. Computer vision for driver assistance systems. In: Proceedings of Aerospace/Defense Sensing and Controls. 1998, 136–147
26
Avidan S. Support vector tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(8): 1064–1072
https://doi.org/10.1109/TPAMI.2004.53
27
Ahmed J, Shah M, Miller A, Harper D, Jafri M N. A vision-based system for a UGV to handle a road intersection. In: Proceedings of National Conference on Artificial Intelligence. 2007, 1077
28
Rand D, Kizony R,Weiss P T. The Sony playstation II eyetoy: low-cost virtual reality for use in rehabilitation. Journal of Neurologic Physical Therapy, 2008, 32(4): 153–163
https://doi.org/10.1097/NPT.0b013e31818ee779
29
Wang S, Xiong X, Xu Y, Wang C, Zhang W, Dai X, Zhang D. Facetracking as an augmented input in video games: enhancing presence, role-playing and control. In: Proceedings of SIGCHI Conference on Human Factors in Computing Systems. 2006, 1097–1106
https://doi.org/10.1145/1124772.1124936
30
Amini A A, Owen R L, Anandan P, Duncan J. Non-rigid motion models for tracking the left ventricular wall. In: Proceedings of the 12th International Conference on Information Processing in Medical Imaging.1991, 343–357
https://doi.org/10.1007/BFb0033764
31
Vasconcelos M J M, Ventura S M R, Freitas D R S, Tavares J M R S. Using statistical deformable models to reconstruct vocal tract shape from magnetic resonance images. Institution ofMechanical Engineers,Part H: Journal of Engineering in Medicine, 2010, 224(10): 1153–1163
https://doi.org/10.1243/09544119JEIM767
32
Vasconcelos M J M, Ventura S M R, Freitas D R S, Tavares J M RS. Towards the automatic study of the vocal tract from magnetic resonance images. Journal of Voice: Official Journal of the Voice Foundation,2011, 25: 732–742
https://doi.org/10.1016/j.jvoice.2010.05.002
33
Stauffer C, Grimson W E L. Learning patterns of activity using realtime tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8): 747–757
https://doi.org/10.1109/34.868677
34
Bodor R, Jackson M, Papanikolopoulos N. Vision-based human tracking and activity recognition. In: Proceedings of the 11thMediterranean Conference on Control and Automation. 2003, 18–20
35
Lucas B D, Kanade T. An iterative image registration technique with an application to stereo vision. In: Proceedings of International Joint Conference on Artificial Intelligence. 1981, 674–679
36
Fitts J M. Precision correlation tracking via optimal weighting functions.In: Proceedings of the 18th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes. 1979, 280–283
https://doi.org/10.1109/cdc.1979.270181
Joshi K A, Thakore D G. A survey on moving object detection and tracking in video surveillance system. International Journal of Soft Computing and Engineering, 2012: 2231–2307
39
Yang H, Shao L, Zheng F, Wang L, Song Z. Recent advances and trends in visual tracking: a review. Neurocomputing, 2011, 74(18):3823–3831
https://doi.org/10.1016/j.neucom.2011.07.024
40
Cannons K. A review of visual tracking. Technical Report CSE-2008-07. 2008
41
Geronimo D, Lopez A M, Sappa A D, Graf T. Survey of pedestrian detection for advanced driver assistance systems. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(7): 1239–1258
https://doi.org/10.1109/TPAMI.2009.122
42
Ogale N A. A survey of techniques for human detection. Master’s Thesis. University of Maryland, 2006
Moeslund T B, Hilton A, Krüger V. A survey of advances in visionbased human motion capture and analysis. Computer Vision and Image Understanding, 2006, 104(2): 90–126
https://doi.org/10.1016/j.cviu.2006.08.002
45
Aggarwal J K, Cai Q. Human motion analysis: a review. In: Proceedings of IEEE Nonrigid and Articulated Motion Workshop. 1997, 90–102
https://doi.org/10.1109/NAMW.1997.609859
46
Kang W, Deng F. Research on intelligent visual surveillance for public security. In: Proceedings of IEEE/ACIS International Conference on Computer and Information Science. 2007, 824–829
https://doi.org/10.1109/icis.2007.157
47
Forsyth D A, Arikan O, Ikemoto L. Computational Studies of Human Motion: Tracking and Motion Synthesis. Boston: Now Publishers Inc.2006
48
Zhan B, Monekosso D N, Remagnino P, Velastin S A, Xu L Q. Crowd analysis: a survey. Machine Vision and Applications, 2008, 19(5-6):345–357
https://doi.org/10.1007/s00138-008-0132-4
49
Arulampalam M S, Maskell S, Gordon N, Clapp T. A tutorial on particle filters for online nonlinear/non-gaussian bayesian tracking. IEEE Transactions on Signal Processing, 2002, 50(2): 174–188
https://doi.org/10.1109/78.978374
50
Jalal A S, Singh J. The state-of-the-art in visual object tracking. Informatica Slovenia, 2012, 36(3): 227–248
51
Li X, Hu W, Shen C, Zhang Z, Dick A, Hengel A V D. A survey of appearance models in visual object tracking. ACM Transactions on Intelligent Systems and Technology, 2013, 4(4): 58
https://doi.org/10.1145/2508037.2508039
52
Fukunaga K, Hostetler L. The estimation of the gradient of a density function, with applications in pattern recognition. IEEE Transactions on Information Theory, 1975, 21(1): 32–40
https://doi.org/10.1109/TIT.1975.1055330
53
Cheng Y. Mean shift, mode seeking, and clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995, 17(8): 790–799
https://doi.org/10.1109/34.400568
54
Comaniciu D, Meer P. Mean shift: a robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(5): 603–619
https://doi.org/10.1109/34.1000236
55
Comaniciu D, Meer P. Robust analysis of feature spaces: color image segmentation. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 1997, 750–755
https://doi.org/10.1109/CVPR.1997.609410
56
Comaniciu D, Ramesh V, Meer P. Real-time tracking of non-rigid objects using mean shift. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2000, 142–149
https://doi.org/10.1109/cvpr.2000.854761
57
Comaniciu D, Ramesh V, Meer P. Kernel-based object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003,25(5): 564–575
https://doi.org/10.1109/TPAMI.2003.1195991
58
Hero A O, Ma B, Michel O J J, Gorman J. Applications of entropic spanning graphs. IEEE Signal Processing Magazine, 2002, 19(5): 85–95
https://doi.org/10.1109/MSP.2002.1028355
59
Yang C, Duraiswami R, Davis L. Efficient mean-shift tracking via a new similarity measure. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2005, 176–183
60
Beleznai C, Fruhstuck B, Bischof H. Human tracking by fast mean shift mode seeking. Journal of Multimedia, 2006, 1(1): 1–8
https://doi.org/10.4304/jmm.1.1.1-8
61
Beleznai C, Fruhstuck B, Bischof H. Human tracking by mode seeking. In: Proceedings of the 4th International Symposium on Image and Signal Processing and Analysis. 2005, 1–6
https://doi.org/10.1109/ispa.2005.195374
62
Beleznai C, Fruhstuck B, Bischof H. Tracking multiple humans by fast mean shift mode seeking. In: Proceedings of IEEE International Workshop on Performance Evaluation of Tracking and Surveillance. 2005,25–32
63
Beleznai C, Fruhstuck B, Bischof H. Detecting humans in groups using a fast mean shift procedure. In: Proceedings of Workshop of the Austrian Association for Pattern Recogniton. 2004, 71–78
64
Beleznai C, Fruhstuck B, Bischof H. Human detection in groups using a fast mean shift procedure. In: Proceedings of International Conference on Image Processing. 2004, 349–352
https://doi.org/10.1109/icip.2004.1418762
65
Zivkovic Z, Krose B. An EM-like algorithm for color-histogram-based object tracking. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2004, 798–803
https://doi.org/10.1109/cvpr.2004.1315113
Ning J, Zhang L, Zhang D, Wu C. Robust object tracking using joint color-texture histogram. International Journal of Pattern Recognition and Artificial Intelligence, 2009, 23: 1245–1263
https://doi.org/10.1142/S0218001409007624
68
Shan C, Tan T,Wei Y. Real-time hand tracking using a mean shift embedded particle filter. Pattern Recognition, 2007, 40(7): 1958–1970
https://doi.org/10.1016/j.patcog.2006.12.012
69
Wang X, Liu L, Tang Z. Infrared human tracking with improved mean shift algorithm based on multicue fusion. Journal of Applied Otics,2009, 48(21): 4201–4212
https://doi.org/10.1364/AO.48.004201
70
Shen C, Brooks M J, Van Den Hengel A. Fast global kernel density mode seeking: applications to localization and tracking. IEEE Transactions on Image Processing, 2007, 16(5): 1457–1469
https://doi.org/10.1109/TIP.2007.894233
71
Adam A, Rivlin E, Shimshoni I. Robust fragments-based tracking using the integral histogram. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2006, 798–805
https://doi.org/10.1109/cvpr.2006.256
72
Jeyakar J, Babu R V, Ramakrishnan K R. Robust object tracking with background-weighted local kernels. Computer Vision and Image Understanding,2008, 112(3):296–309
https://doi.org/10.1016/j.cviu.2008.05.005
73
Khan M I, Ahmed J, Ali A, Masood A. Robust edge-enhanced fragment based normalized correlation tracking in cluttered and occluded imagery. In: Proceedings of Signal Processing, Image Processing and Pattern Recognition. 2009, 169–176
https://doi.org/10.1007/978-3-642-10546-3_21
74
Kalman R E, Bucy R S. New results in linear filtering and prediction theory. Journal of Basic Engineering, 1961, 83: 95–108
https://doi.org/10.1115/1.3658902
Grewal MS, Andrews A P. Kalman filtering: theory and practice using MATLAB. New York, Chichester, Brisbane: JohnWiley & Sons, 2008
https://doi.org/10.1002/9780470377819
77
Welch G, Bishop G. An introduction of the kalman filter. Technical Report. 2005
78
Asgarizadeh M, Pourghassem H. A robust object tracking synthetic structure using regional mutual information and edge correlation-based tracking algorithm in aerial surveillance application. Signal, Image and Video Processing, 2015, 9(1): 175–189
https://doi.org/10.1007/s11760-013-0431-8
79
Comaniciu D, Ramesh V. Mean shift and optimal prediction for efficient object tracking. In: Proceedings of International Conference on Image Processing. 2000, 70–73
https://doi.org/10.1109/icip.2000.899297
80
Li Z, Xu C, Li Y. Robust object tracking using mean shift and fast motion estimation. In: Proceedings of IEEE International Symposium on Intelligent Signal Processing and Communication Systems. 2007,734–737
81
Li X, Zhang T, Shen X, Sun J. Object tracking using an adaptive kalman filter combined with mean shift. Optical Engineering, 2010,49(2): 020503
https://doi.org/10.1117/1.3327281
82
Ali A, Mirza S M. Object tracking using correlation, kalman filter and fast means shift algorithms. In: Proceedings of International Conference on Emerging Technologies. 2006, 174–178
https://doi.org/10.1109/icet.2006.335916
83
Ahmed J, Jafri M N, Shah M, Akbar M. Real-time edge-enhanced dynamic correlation and predictive open-loop car-following control for robust tracking. Machine Vision and Applications, 2008, 19(1): 1–25
https://doi.org/10.1007/s00138-007-0072-4
84
Boykov Y, Huttenlocher D P. Adaptive bayesian recognition in tracking rigid objects. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2000, 697–704
https://doi.org/10.1109/cvpr.2000.854942
85
Beymer D, McLauchlan P, Coifman B, Malik J. A real-time computer vision system for measuring traffic parameters. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 1997,495–501
https://doi.org/10.1109/CVPR.1997.609371
86
Broida T J, Chellappa R. Estimation of object motion parameters from noisy images. IEEE Transactions on Pattern Analysis and Machine Intelligence,1986, 8(1): 90–99
https://doi.org/10.1109/TPAMI.1986.4767755
87
Gennery D B. Visual tracking of known three-dimensional objects. International Journal of Computer Vision, 1992, 7(3): 243–270
https://doi.org/10.1007/BF00126395
88
Terzopoulos D, Szeliski R. Tracking with kalman snakes. In: Active Vision. Cambridge, MA, USA: MIT Press, 1993, 3–20
89
Blake A, Isard M. Active Contours: The Application of Techniques from Graphics, Vision, Control Theory and Statistics to Visual Tracking of Shapes in Motion. 1st ed. Secaucus, NJ, USA: Springer-Verlag New York, Inc., 1998
https://doi.org/10.1007/978-1-4471-1555-7
90
Cuevas E V, Zaldivar D, Rojas R. Kalman filter for vision tracking.Technical Report. 2005
Ridder C, Munkelt O, Kirchner H. Adaptive background estimation and foreground detection using kalman-filtering. In: Proceedings of International Conference on recent Advances in Mechatronics. 1995,193–199
93
Peterfreund N. Robust tracking of position and velocity with kalman snakes. IEEE Transactions on Pattern Analysis and Machine Intelligence,1999, 21(6): 564–569
https://doi.org/10.1109/34.771328
94
Anderson B D O, Moore J B. Optimal Filtering. Mincola: Courier Dover Publications, 2012
95
Doucet A, Godsill S, Andrieu C. On sequential monte carlo sampling methods for bayesian filtering. Statistics and Computing, 2000, 10(3):197–208
https://doi.org/10.1023/A:1008935410038
96
Isard M, Blake A. Condensation–conditional density propagation for visual tracking. International Journal of Computer Vision, 1998, 29(1):5–28
https://doi.org/10.1023/A:1008078328650
97
Rao G M, Satyanarayana C. Visual object target tracking using particle filter: a survey. International Journal of Image, Graphics and Signal Processing, 2013, 5(6): 57–71
https://doi.org/10.5815/ijigsp.2013.06.08
98
Duda R O, Hart P E. Pattern Classification and Scene Analysis. New York: Wiley, 1973
99
Gonzalez R C, Woods R E. Digital Image Processing. Upper Saddle River, N.J.: Pearson/Prentice Hall, 2008
100
Kuglin C D, Hines D C. The phase correlation image alignment method. IEEE Conference on Cybernetics and Society, 1975, 163–165
101
Lewis J P. Fast normalized cross-correlation. Vision Interface, 1995,10(1): 120–123
102
Chien S I, Sung S H. Adaptive window method with sizing vectors for reliable correlation-based target tracking. Pattern Recognition, 2000,33(2): 237–249
https://doi.org/10.1016/S0031-3203(99)00056-4
103
Manduchi R, Mian G A. Accuracy analysis for correlation-based image registration algorithms. In: Proceedings of IEEE International Symposium on Circuits and Systems. 1993, 834–837
104
Stone H S, Tao B, McGuire M. Analysis of image registration noise due to rotationally dependent aliasing. Journal of Visual Communication and Image Representation, 2003, 14(2): 114–135
https://doi.org/10.1016/S1047-3203(03)00002-6
105
Stone H S. Fourier-based image registration techniques. Technical Report.2002
106
Foroosh H, Zerubia J B, Berthod M. Extension of phase correlation to subpixel registration. IEEE Transactions on Image Processing, 2002,11(3): 188–200
https://doi.org/10.1109/83.988953
107
Keller Y, Averbuch A, Miller O. Robust phase correlation. In: Proceedings of the 17th International Conference on Pattern Recognition.2004, 740–743
https://doi.org/10.1109/icpr.2004.1334365
108
Ahmed J, Jafri M N. Improved phase correlation matching. In: Proceedings of International Conference on Image and Signal Processing.2008, 128–135
https://doi.org/10.1007/978-3-540-69905-7_15
109
Blackman S S, Popoli R F. Design and Analysis of Modern Tracking Systems. Boston, M A: Artech House, 1999
110
Nixon M S, Aguado A S. Feature Extraction & Image Processing.London: Academic Press, 2008
111
Ali A, Jalil A, Ahmed J, Iftikhar M A, Hussain M. Correlation, kalman filter and adaptive fast mean shift based heuristic approach for robust visual tracking. Signal, Image and Video Processing, 2014: 1–19
112
Wren C R, Azarbayejani A, Darrell T, Pentland A P. Pfinder: real-time tracking of the human body. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 780–785
https://doi.org/10.1109/34.598236
113
Grimson W E L, Stauffer C, Romano R, Lee L. Using adaptive tracking to classify and monitor activities in a site. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.1998, 22–29
https://doi.org/10.1109/cvpr.1998.698583
114
Stauffer C, Grimson W E L. Adaptive background mixture models for real-time tracking. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 1999
https://doi.org/10.1109/cvpr.1999.784637
115
KaewTraKulPong P, Bowden R. An improved adaptive background mixture model for real-time tracking with shadow detection. Video-Based Surveillance Systems. 2002, 135–144
116
Horprasert T, Harwood D, Davis L S. A robust background subtraction and shadow detection. In: Proceedings of Asian Conference on Computer Vision. 1999, 983–988
117
Horprasert T, Harwood D, Davis L S. A statistical approach for realtime robust background subtraction and shadow detection. In: Proceedings of International Conference on Computer Vision. 1999, 1–19
118
Oliver NM, Rosario B, Pentland A P. A bayesian computer vision system for modeling human interactions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8): 831–843
https://doi.org/10.1109/34.868684
119
Lipton A J, Fujiyoshi H, Patil R S. Moving target classification and tracking from real-time video. In: Proceedings of the 4th IEEE Workshop on Applications of Computer Vision. 1998, 8–14
https://doi.org/10.1109/acv.1998.732851
120
Dailey D J, Cathey FW, Pumrin S. An algorithm to estimate mean traffic speed using uncalibrated cameras. IEEE Transactions on Intelligent Transportation Systems, 2000, 1(2): 98–107
https://doi.org/10.1109/6979.880967
121
Dailey D J, Li L. An algorithm to estimate vehicle speed using uncalibrated cameras. In: Proceedings of IEEE/IEEJ/JSAI International Conference on Intelligent Transportation Systems. 1999, 441–446
https://doi.org/10.1109/itsc.1999.821098
122
Horn B K P, Schunck B G. Determining optical flow. Technical Report.1980
123
Black M J, Anandan P. The robust estimation of multiple motions:Parametric and piecewise-smooth flow fields. Computer Vision and Image Understanding, 1996, 63(1): 75–104
https://doi.org/10.1006/cviu.1996.0006
124
Szeliski R, Coughlan J. Spline-based image registration. International Journal of Computer Vision, 1997, 22(3): 199–218
https://doi.org/10.1023/A:1007996332012
125
Shi J, Tomasi C. Good features to track. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.1994, 593–600
126
Rangarajan K, Shah M. Establishing motion correspondence. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 1991, 103–108
https://doi.org/10.1109/cvpr.1991.139669
127
Papageorgiou C P, Oren M, Poggio T. A general framework for object detection. In: Proceedings of the 6th IEEE International Conference on Computer Vision. 1998, 555–562
https://doi.org/10.1109/iccv.1998.710772
Li B, Chellappa R, Zheng Q, Der S Z. Model-based temporal object verification using video. IEEE Transactions on Image Processing, 2001, 10(6): 897–908
https://doi.org/10.1109/83.923286
130
Bertalmio M, Sapiro G, Randall G. Morphing active contours. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000,22(7): 733–737
https://doi.org/10.1109/34.865191
131
Mansouri A R. Region tracking via level set PDEs without motion computation. IEEE Transactions on Pattern Analysis and Machine Intelligence,2002, 24(7):947–961
https://doi.org/10.1109/TPAMI.2002.1017621
132
Babenko B, Yang M H, Belongie S. Robust object tracking with online multiple instance learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(8): 1619–1632
https://doi.org/10.1109/TPAMI.2010.226
133
Grabner H, Grabner M, Bischof H. Real-time tracking via on-line boosting. In: Proceedings of British Machine Vision Conference.2006, 1(5): 6
https://doi.org/10.5244/c.20.6
134
Collins R T, Liu Y, Leordeanu M. Online selection of discriminative tracking features. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(10): 1631–1643
https://doi.org/10.1109/TPAMI.2005.205
135
Santner J, Leistner C, Saffari A, Pock T, Bischof H. Prost: parallel robust online simple tracking. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2010, 723–730
https://doi.org/10.1109/cvpr.2010.5540145
136
Liu X, Yu T. Gradient feature selection for online boosting. In: Proceedings of the 11th IEEE International Conference on Computer Vision.2007, 1–8
https://doi.org/10.1109/iccv.2007.4408912
137
Avidan S. Ensemble tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(2): 261–271
https://doi.org/10.1109/TPAMI.2007.35
138
Wang J, Chen X, Gao W. Online selecting discriminative tracking features using particle filter. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2005, 1037–1042
139
Kuncheva L I. Combining pattern classifiers: methods and algorithms. IEEE Transactions on Neural Networks, 2007, 18(3): 964–964
https://doi.org/10.1109/TNN.2007.897478
140
Bishop C M. Pattern Recognition and Machine Learning. Springer,2006
141
Hare S, Saffari A, Torr P H S. Struck: structured output tracking with kernels. In: Proceedings of IEEE International Conference on Computer Vision. Nov 2011, 263–270
142
Stalder S, Grabner H. On-line Boosting Trackers. ETH-Zurich, 2009
143
Grabner H, Leistner C, Bischof H. Semi-supervised on-line boosting for robust tracking. In: Proceedings of European Conference on Computer Vision. 2008, 234–247
144
Zeisl B, Leistner C, Saffari A, Bischof H. On-line semi-supervised multiple-instance boosting. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2010, 1879–1879
145
Saffari A, Leistner C, Godec M, Bischof H. Robust multi-view boosting with priors. In: Proceedings of European Conference on Computer Vision, 2010, 776–789
146
Leistner C, Saffari A, Roth P M, Bischof H. On robustness of on-line boosting—a competitive study. In: Proceedings of IEEE International Conference on Computer Vision Workshops. 2009, 1362–1369
147
Masnadi-Shirazi H, Mahadevan V, Vasconcelos N. On the design of robust classifiers for computer vision. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2010, 779–786
148
Zhang K, Song H. Real-time visual tracking via online weighted multiple instance learning. Pattern Recognition, 2013, 46(1): 397–411
149
Williams O, Blake A, Cipolla R. A sparse probabilistic learning algorithm for real-time tracking. In: Proceedings of IEEE International Conference on Computer Vision. 2003, 353–360
150
Kennedy J, Eberhart R. Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks. 1995, 1942–1948
151
Eberhart R, Kennedy J. A new optimizer using particle swarm theory.In: Proceedings of the 6th International Symposium onMicroMachine and Human Science. 1995, 39–43
152
Poli R. Analysis of the publications on the applications of particle swarm optimisation. Journal of Artificial Evolution and Applications,2008, 2008: 3
153
Clerc M, Kennedy J. The particle swarm — explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation, 2002, 6(1): 58–73
154
Wachowiak M P, Smolikova R, Zheng Y, Zurada J M, Elmaghraby AS. An approach to multimodal biomedical image registration utilizing particle swarm optimization. IEEE Transactions on Evolutionary Computation, 2004, 8(3): 289–301
155
Engelbrecht A P. Computational Intelligence: an Introduction. 2nd ed.New York: John Wiley & Sons, 2007
156
Sedighizadeh D, Masehian E. Particle swarm optimization methods, taxonomy and applications. International Journal of Computer Theory and Engineering, 2009, 1(5): 486–502
157
Zhang X, Hu W, Maybank S, Zhu M. Sequential particle swarm optimization for visual tracking. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2008, 1–8
158
Zhang X, Hu W, Qu W, Maybank S. Multiple object tracking via species-based particle swarm optimization. IEEE Transactions on Circuits and Systems for Video Technology, 2010, 20(11): 1590–1602
159
Akbari R, Jazi M D, Palhang M. A hybrid method for robust multiple objects tracking in cluttered background. In: Proceedings of the 2nd International Conference on Information & Communication Technologies. 2006, 1562–1567
160
Kwolek B. Multi-object tracking using particle swarm optimization on target interactions. In: Proceedings of Advances in Heuristic Signal Processing and Applications. 2013, 63–78
161
Anton-Canalis L, Hernandez-Tejera M, Sanchez-Nielsen E. Particle swarms as video sequence inhabitants for object tracking in computer vision. In: Proceedings of the 6th International Conference on Intelligent Systems Design and Applications. 2006, 604–609
162
Zheng Y, Meng Y. Adaptive object tracking using particle swarm optimization.In: Proceedings of International Symposium on Computational Intelligence in Robotics and Automation. 2007, 43–48
163
Tawab A M A, Abdelhalim M B, Habib S E D. Efficient multi-feature PSO for fast gray level object-tracking. Applied Soft Computing, 2014,14: 317–337
164
Borra S K, Chaparala S K. Tracking of an object in video stream using a hybrid PSO-FCM and pattern matching. International Journal of Engineering Research and Technology, 2013, 2
165
Donoho D L. Compressed sensing. IEEE Transactions on Information Theory, 2006, 52(4): 1289–1306
166
Candes E J, Romberg J K, Tao T. Stable signal recovery from incomplete and inaccurate measurements. Communications on Pure and Applied Mathematics, 2006, 59(8): 1207–1223
167
Wright J, Ma Y, Mairal J, Sapiro G, Huang T S, Yan S. Sparse representation for computer vision and pattern recognition. Proceedings of the IEEE, 2010, 98(6): 1031–1044
168
Sapiro G, Mairal J, Wright J, Ma Y, Huang T, Yan S. Sparse representation for computer vision and pattern recognition. Technical Report.2009
169
Yang J, Wright J, Huang T S, Ma Y. Image super-resolution via sparse representation. IEEE Transactions on Image Processing, 2010, 19(11):2861–2873
170
Wright J, Yang A Y, Ganesh A, Sastry S S, Ma Y. Robust face recognition via sparse representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2): 210–227
171
Mei X, Ling H. Robust visual tracking using l1 minimization. In: Proceedings of IEEE International Conference on Computer Vision. 2009,1436–1443
172
Mei X. Visual tracking and illumination recovery via sparse representation.Dissertation for the Doctoral Degree. University of Maryland,2009
173
Mei X, Ling H. Robust visual tracking and vehicle classification via sparse representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(11): 2259–2272
174
Liu B, Yang L, Huang J, Meer P, Gong L, Kulikowski C. Robust and fast collaborative tracking with two stage sparse optimization. In: Proceedings of European Conference on Computer Vision. 2010, 624–637
175
Liu J, Huang J, Yang L, Kulikowski C. Robust tracking using local sparse appearance model and k-selection. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2011, 1313–1320
176
Zhong W, Lu H, Yang H M. Robust object tracking via sparsity-based collaborative model. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2012, 1838–1845
177
Jia X, Lu X, Yang M H. Visual tracking via adaptive structural local sparse appearance model. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2012, 1822–1829
178
Zhang K, Zhang L, Yang M H. Real-time compressive tracking. In:Proceedings of European Conference on Computer Vision. 2012, 864–877
179
Zhang S, Yao H, Sun X, Lu X. Sparse coding based visual tracking: review and experimental comparison. Pattern Recognition, 2013, 46(7):1772–1788
180
Oliva A, Torralba A. The role of context in object recognition. Trends in Cognitive Sciences, 2007, 11(12): 520–527
181
Divvala S K, Hoiem D, Hays J H, Efros A A, Hebert M. An empirical study of context in object detection. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2009, 1271–1278
182
Yang M, Wu Y, Hua G. Context-aware visual tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(7):1195–1209
183
Li Y, Nevatia R. Key object driven multi-category object recognition,localization and tracking using spatio-temporal context. In: Proceedings of Europian Conference on Computer Vision. 2008, 409–422
184
Nguyen H T, Ji Q, Smeulders A W M. Spatio-temporal context for robust multitarget tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(1): 52–64
185
Wen L, Cai Z, Lei Z, Yi D, Li S. Robust online learned spatio-temporal context model for visual tracking. IEEE Transactions on Image Processing,2014, 23(2): 785–796
186
Grabner H, Matas J, Van Gool L, Cattin P. Tracking the invisible:Learning where the object might be. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2010, 1285–1292
187
Wu Z, Hristov N I, Hedrick T L, Kunz T H, Betke M. Tracking a large number of objects from multiple views. In: Proceedings of IEEE International Conference on Computer Vision. 2009, 1546–1553
188
Sugimura D, Kitani KM, Okabe T, Sato Y, Sugimoto A. Using individuality to track individuals: clustering individual trajectories in crowds using local appearance and frequency trait. In: Proceedings of IEEE International Conference on Computer Vision. 2009, 1467–1474
189
Ali S, Shah M. Floor fields for tracking in high density crowd scenes.Lecture Notes in Computer Science. 2008, 5303: 1–14
190
Zhao T, Nevatia R. Tracking multiple humans in crowded environment.In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2004, 406–413
191
Betke M, Hirsh D E, Bagchi A, Hristov N I, Makris N C, Kunz TH. Tracking large variable numbers of objects in clutter. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.2007, 1–8
192
Li Y, Huang C, Nevatia R. Learning to associate: Hybridboosted multitarget tracker for crowded scene. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2009, 2953–2960
193
Wu B, Nevatia R. Tracking of multiple, partially occluded humans based on static body part detection. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2006, 951–958
194
Brostow G J, Cipolla R. Unsupervised Bayesian detection of independent motion in crowds. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2006, 594–601
195
Pellegrini S, Ess A, Schindler K, Van Gool L. You’ll never walk alone:Modeling social behavior for multi-target tracking. In: Proceedings of IEEE International Conference on Computer Vision. 2009, 261–268
196
Rodriguez M, Ali S, Kanade T. Tracking in unstructured crowded scenes. In: Proceedings of IEEE International Conference on Computer Vision. 2009, 1389–1396
197
Kratz L, Nishino K. Tracking with local spatio-temporal motion patterns in extremely crowded scenes. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2010, 693–700
198
Rodriguez M, Sivic J, Laptev I, Audibert J Y. Data-driven crowd analysis in videos. In: Proceedings of IEEE International Conference on Computer Vision. 2011, 1235–1242
199
Idrees H, Warner N, Shah M. Tracking in dense crowds using prominence and neighborhood motion concurrence. Image and Vision Computing,2014, 32(1): 14–26
200
Zhang L, Maaten v. d L. Structure preserving object tracking. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.2013, 1838–1845
201
Zhu F, Wang X, Yu N. Crowd tracking with dynamic evolution of group structures. In: Proceedings of the 13th European Conference on Computer Vision–ECCV. 2014, 139–154
202
Gao Y, Ji R, Zhang L, Hauptmann A. Symbiotic tracker ensemble towards a unified tracking framework. IEEE Transactions on Circuits and Systems for Video Technology, 2014, 24(7): 1122–1131
203
Zhong B, Yao H, Chen S, Ji R, Chin T J, Wang H. Visual tracking via weakly supervised learning from multiple imperfect oracles. Pattern Recognition, 2014, 47(3): 1395–1410
204
Yao A, Lin X, Wang G, Yu S. A compact association of particle filtering and kernel based object tracking. Pattern Recognition, 2012, 45(7):2584–2597
205
Henriques J F, Caseiro R, Martins P, Batista J. Exploiting the circulant structure of tracking-by-detection with kernels. In: Proceedings of the 12th European Conference on Computer Vision—ECCV 2012. 2012,702–715
206
Wu Y, Lim J, Yang MH. Online object tracking: a benchmark. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.2013, 2411–2418
207
Ross D A, Lim J, Lin R S, Yang M H. Incremental learning for robust visual tracking. International Journal of Computer Vision, 2008,77(1-3): 125–141
208
Kwon J, Lee K M. Visual tracking decomposition. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2010,1269–1276
209
Wang Y, Qi Y, Li Y. Memory-based multiagent coevolution modeling for robust moving object tracking. The Scientific World Journal, 2013,2013
210
Wang Y, Qi Y. Memory-based cognitive modeling for robust object extraction and tracking. Applied Intelligence, 2013, 39(3): 614–629
211
Smith K, Ba S O, Odobez J M, Gatica-Perez D. Tracking the visual focus of attention for a varying number of wandering people. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008,30(7): 1212–1229