High-throughput RNA sequencing (RNA-seq) has emerged as a revolutionary and powerful technology for expression profiling. Most proposed methods for detecting differentially expressed (DE) genes from RNA-seq are based on statistics that compare normalized read counts between conditions. However, there are few methods considering the expression measurement uncertainty into DE detection. Moreover, most methods are only capable of detecting DE genes, and few methods are available for detecting DE isoforms. In this paper, a Bayesian framework (BDSeq) is proposed to detect DE genes and isoforms with consideration of expression measurement uncertainty. This expression measurement uncertainty provides useful information which can help to improve the performance of DE detection. Three real RAN-seq data sets are used to evaluate the performance of BDSeq and results show that the inclusion of expression measurement uncertainty improves accuracy in detection of DE genes and isoforms. Finally, we develop a GamSeq-BDSeq RNA-seq analysis pipeline to facilitate users.
Mortazavi A, Williams A, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature Methods, 2008, 5(7): 621―628
https://doi.org/10.1038/nmeth.1226
2
Marioni J, Mason C, Mane S, Stephens M, Gilad Y. RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Research, 2008, 18: 1509―1517
https://doi.org/10.1101/gr.079558.108
3
Marguerat S, B?hler J. RNA-seq: from technology to biology. Cellular and Molecular Life Sciences, 2010, 67(4): 569―579
https://doi.org/10.1007/s00018-009-0180-6
4
Rapaport F, Khanin R, Liang Y, Pirun M, Krek A, Zumbo P, Mason C E, Socci N D, Betel D. Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data. Genome Biology, 2013, 14(9): R95
https://doi.org/10.1186/gb-2013-14-9-r95
5
Zhang Z H, Jhaveri D J, Marshall VM, Bauer D C, Edson J, Narayanan R K, Zhao Q. A comparative study of techniques for differential expression analysis on RNA-Seq data. PLoS ONE, 2014, 9: e103207
https://doi.org/10.1371/journal.pone.0103207
6
Ozsolak F, Milos P. RNA sequencing: advances, challenges and opportunities. Nature Reviews Genetics, 2011, 12(2): 87―98
https://doi.org/10.1038/nrg2934
7
Soneson C, Delorenzi M. A comparison of methods for differential expression analysis of RNA-seq data. BMC Bioinformatics, 2013, 14(1): 9
https://doi.org/10.1186/1471-2105-14-91
8
Kvam V, Lu P, Si Y. A comparison of statistical methods for detecting differentially expressed genes from Rna-Seq data. American Journal of Botany, 2012, 99(2): 248―256
https://doi.org/10.3732/ajb.1100340
9
Seyednasrollah F, Laiho A, Elo L L. Comparison of software packages for detecting differential expression in RNA-seq studies. Briefings in bioinformatics, 2013, bbt086
10
Anders S, McCarthy D J, Chen Y, Okoniewski M, Smyth G K, Huber W, Robinson M D. Count-based differential expression analysis of RNA sequencing data using R and Bioconductor. Nature Protocols, 2013, 8(9): 1765―1786
https://doi.org/10.1038/nprot.2013.099
Hardcastle T, Kelly K. baySeq: empirical Bayesian methods for identifying differential expression in sequence count data. BMC Bioinformatics, 2010, 11(1): 422
https://doi.org/10.1186/1471-2105-11-422
13
Di Y, Schafer D, Cumbie J, Chang J. The NBP negative binomial model for assessing differential gene expression from RNA-Seq. Statistical Applications in Genetics and Molecular Biology, 2011, 10(1): 1―28
https://doi.org/10.2202/1544-6115.1637
14
Yu D, Huber W, Vitek O. Shrinkage estimation of dispersion in negative binomial models for RNA-seq experiments with small sample size. Bioinformatics, 2013, 29(10): 1275―1282
https://doi.org/10.1093/bioinformatics/btt143
15
Robinson M, Smyth G. Moderated statistical tests for assessing differences in tag abundance. Bioinformatics, 2007, 23(21): 2881―2887
https://doi.org/10.1093/bioinformatics/btm453
16
Wu H, Wang C, Wu Z. A new shrinkage estimator for dispersion improves differential expression detection in RNA-seq data. Biostatistics, 2013, 14(2): 232―243
https://doi.org/10.1093/biostatistics/kxs033
17
Law CW, Chen Y, Shi W, Smyth G K. Voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biology, 2014, 15: R29
https://doi.org/10.1186/gb-2014-15-2-r29
18
Bi Y, Davuluri R V. NPEBseq: nonparametric empirical bayesianbased procedure for differential expression analysis of RNA-seq data. BMC bioinformatics, 2013, 14(1): 262
https://doi.org/10.1186/1471-2105-14-262
19
Sandmann T, Vogg M, Owlarn S, Boutros M, Bartscherer K. The headregeneration transcriptome of the planarian Schmidtea mediterranea. Genome Biol, 2011, 12(8): R76
https://doi.org/10.1186/gb-2011-12-8-r76
Li B, Dewey C. RSEM: accurate transcript quantification from RNASeq data with or without a reference genome. BMC Bioinformatics, 2011, 12(1): 323
https://doi.org/10.1186/1471-2105-12-323
22
Trapnell C, Williams B, Pertea G, Mortazavi A, Kwan G, Baren M, Salzberg S, Wold B, Pachter L. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nature Biotechnology, 2010, 28(5): 211―215
https://doi.org/10.1038/nbt.1621
23
Glaus P, Honkela A, Rattray M. Identifying differentially expressed transcripts from RNA-seq data with biological variation. Bioinformatics, 2011, 28(13): 1721―1728
https://doi.org/10.1093/bioinformatics/bts260
24
Leng N, Dawson J, Thomson A, Ruotti V, Rissman A, Smits B M G, Haag J D, Gould M N, Stewart R M, Kendziorski C. EBSeq: an empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics, 2013, 29(8): 1035―1043
https://doi.org/10.1093/bioinformatics/btt087
25
Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley D, Pimentel H, Salzberg S L, Rinn J L, Pachter L. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nature Protocols, 2012, 7(3): 562―578
https://doi.org/10.1038/nprot.2012.016
26
Hein A, Richardson S, Causton H, Ambler G, Green P. BGX: a fully Bayesian integrated approach to the analysis of Affymetrix GeneChip data. Biostatistics, 2005, 6(3): 349―373
https://doi.org/10.1093/biostatistics/kxi016
27
Liu X, Milo M, Lawrence D, Rattray M. Probe-level measurement error improv<?Pub Caret?>es accuracy in detecting differential gene expression. Bioinformatics, 2006, 22(17): 2107―2113
https://doi.org/10.1093/bioinformatics/btl361
28
Zhang L, Liu X. An improved probabilistic model for finding differential gene expression. In: Proceedings of the 2nd International Conference on Biomedical Engineering and Informatics. 2009, 1-4: 1566―1571
29
Zhang L, Liu X. A Gamma-based method of RNA-seq analysis. Journal of Nanjing University (Natural Sciences), 2013, 49: 465―474(in Chinese)
30
Jordan M, Ghahramani Z, Jaakkola T, Saul L. An introduction to variational methods for graphical models. Machine Learning, 1999, 37(2): 183―233
https://doi.org/10.1023/A:1007665907178
31
Sun J, Kaban A. A fast algorithm for robust mixtures in the presence of measurement errors. IEEE Transactions on Neural Networks, 2010, 21(8): 1206―1220
https://doi.org/10.1109/TNN.2010.2048219
32
MAQC Consortium. TheMicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements. Nature Biotechnology, 2006, 24(9): 1151―1161
https://doi.org/10.1038/nbt1239
33
Canales R D, Luo Y L, Willey J C, Austermiller B, Barbacioru C C, Boysen C, Hunkapiller K, Jensen R V, Knight C R, Lee K Y, Ma Y Q, Maqsodi B, Papallo A, Peters E H, Poulter K, Ruppel P L, Samaha R R, Shi L M, Yang W, Zhang L, Goodsaid F M. Evaluation of DNA microarray results with quantitative gene expression platforms. Nature Biotechnology, 2006, 24(9): 1115―1122
https://doi.org/10.1038/nbt1236
34
Griffith M, Griffith OL, Mwenifumbo J, Goya R, Morrissy AS, Morin R D, Corbett R, Tang M J, Hou Y C, Pugh T J, Robertson G, Chittaranjan S, Ally A, Asano J K, Chan S Y, Li H Y I, McDonald H, Teague K, Zhao Y J, Zeng T, Delaney A, Hirst M, Morin G B, Jones S GM, Tai I T, Marra M A. Alternative expression analysis by RNA sequencing. Nature Methods, 2010, 7(10): 843―847
https://doi.org/10.1038/nmeth.1503
35
Wang E, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, Kingsmore S F, Schroth G P, Burge C B. Alternative isoform regulation in human tissue transcriptomes. Nature, 2008, 456(7221): 470―476
https://doi.org/10.1038/nature07509