In recent years, data quality issues have attracted wide attentions. Data quality problems are mainly caused by dirty data. Currently, many methods for dirty data management have been proposed, and one of them is entity-based relational database in which one tuple represents an entity. The traditional query optimizations are not suitable for the new entity-based model. Then new query optimizations need to be developed. In this paper, we propose a new query selectivity estimation strategy based on histogram, and focus on solving the overestimation which traditional methods lead to. We prove our approaches are unbiased. The experimental results on both real and synthetic data sets show that our approaches can give good estimates with low error.
Batini C, Scannapieco M. Data Quality: Concepts, Methodologies and Techniques. New York: Springer Publishing Company, Inc., 2006
2
Lenzerini M. Data integration: a theoretical perspective. In: Proceedings of the 21st ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems. 2015, 233–246
3
Dong X L, Halevy A, Yu C. Data integration with uncertainty. The VLDB Journal—The International Journal on Very Large Data Bases, 2009, 18(2): 469–500
4
Redman T. The impact of poor data quality on the typical enterprise. Communications of the ACM, 1998, 41(2): 49–71 https://doi.org/10.1145/269012.269025
5
Raman D, Ton Z. Execution: the missing link in retail operations. Jutas Bus.l, 2001, 43(3): 489–503 https://doi.org/10.2307/41166093
6
English L P. Information quality management: the next frontier. In: Proceedings of ASQ World Conference on Quality and Improvement. 2001
7
Rahm E, Do H H. Data cleaning: problems and current approaches. IEEE Data Engineering Bulletin, 2000, 23(23): 3–13
8
Fan W F, Li J, Ma S, Tang N, Yu W. Interaction between record matching and data repairing. Journal of Data & Information Quality, 2011, 4(4): 469–480 https://doi.org/10.1145/1989323.1989373
9
Fuxman A D, Miller R J. First-order query rewriting for inconsistent databases. In: Proceedings of International Conference on Database Theory. 2005, 337–351
10
Andritsos P, Fuxman A, Miller R J. Clean answers over dirty databases: a probabilistic approach. IEEE Computer Society, 2006, 30
11
Wolf G, Kalavagattu A, Khatri H, Balakrishnan R, Chokshi B, Fan J, Chen Y, Kambhampati S. Query processing over incomplete autonomous databases: query rewriting using learned data dependencies. The VLDB Journal, 2009, 18(5): 1167–1190 https://doi.org/10.1007/s00778-009-0155-0
12
Fuxman A, Fazli E, Miller J. Conquer: efficient management of inconsistent databases. In: Proceedings of SIGMOD Conference. 2005, 155–166 https://doi.org/10.1145/1066157.1066176
13
Boulos J, Dalvi N, Mandhani B, Mathur S, Re C, Suciu D. MYSTIQ: a system for finding more answers by using probabilities. In: Proceedings of ACM SIGMOD International Conference on Management of Data. 2005, 891–893 https://doi.org/10.1145/1066157.1066277
14
Dalvi N, Suciu D. Management of probabilistic data: foundations and challenges. In: Proceedings of ACM SIGMOD International Conference on Management of Data. 2007, 1–12 https://doi.org/10.1145/1265530.1265531
15
Widom J. Trio: a system for integrated management of data, accuracy, and lineage. In: Proceedings of the Conference on Innovative Data Systems Research (CIDR). 2005, 262–276
16
Hassanzadeh O, Miller R J. Creating probabilistic databases from duplicated data. The VLDB Journal—The International Journal on Very Large Data Bases, 2009, 18(5): 1141–1166
17
Benjelloun O, Garcia-Molina H, Menestrina D, Whang S E, Su Q, Widom J. Swoosh: a generic approach to entity resolution. The VLDB Journal—The International Journal on Very Large Data Bases, 2009, 18(1): 255–276
18
Whang S E, Menestrina D, Koutrika G, Theobald M, Garcia-Molina H. Entity resolution with iterative blocking. In: Proceedings of the 35th SIGMOD International Conference on Management of Data. 2009, 219–232 https://doi.org/10.1145/1559845.1559870
19
Li Y, Wang H, Gao H. Efficient entity resolution based on sequence rules. In: Proceedings of Communications in Computer and Information Science. 2011, 381–388 https://doi.org/10.1007/978-3-642-21402-8_61
20
Lu W, Fung G P C, Du X, Zhou X, Chen L, Deng K. Approximate entity extraction in temporal databases. World Wide Web, 2011, 14(2): 157–186 https://doi.org/10.1007/s11280-011-0109-5
21
Zhang W J, Zhan L M, Zhang Y, Cheema M A, Lin X M. Efficient top-k similarity join processing over multi-valued objects. World Wide Web, 2014, 17(3): 285–309 https://doi.org/10.1007/s11280-012-0201-5
22
Ioannidis Y E. The history of histograms (abridged). In: Proceedings of the 29th International Conference on Very Large Data Bases. 2004, 19–30
23
Cormode G, Garofalakis M. Histograms and wavelets on probabilistic data. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(8): 1142–1157 https://doi.org/10.1109/TKDE.2010.66
24
Cormode G, Deligiannakis A, Garofalakis M, McGregor A. Probabilistic histograms for probabilistic data. Proceedings of the VLDB Endowment, 2009, 2(1): 526–537 https://doi.org/10.14778/1687627.1687687
25
Wang H Z, Liu X L, Li J Z, Tong X, Yang L, Li Y K. EntityManager: an entity-based dirty data management system. In: Proceedings of International Conference on Database Systems for Advanced Applications. 2013, 468–471 https://doi.org/10.1007/978-3-642-37450-0_38
26
Abiteboul S, Kanellakis P, Grahne G. On the representation and querying of sets of possible worlds. Theoretical Computer Science, 1987, 16(3): 34–48 https://doi.org/10.1145/38713.38724
27
Fuhr N, Rolleke T. A probabilistic relational algebra for the integration of information retrieval and database systems. ACM Transactions on Information Systems, 1997, 15(1): 32–66 https://doi.org/10.1145/239041.239045
28
Lakshmanan L, Leone N, Ross R, Subrahmanian V S. Probview: a flexible probabilistic database system. ACM Transactions on Database Systems, 1997, 22(3): 419–469 https://doi.org/10.1145/261124.261131
29
Nierman A, Jagadish H. ProTDB: probabilistic data in XML. In: Proceedings of the 28th International Conference on Very Large Data Bases. 2002, 646–657 https://doi.org/10.1016/B978-155860869-6/50063-9
30
Jin C Q, Yi K, Chen L, Yu J X, Lin X. Sliding-window top-k queries on uncertain streams. Proceedings of the VLDB Endowment, 2008, 1(1): 301–312 https://doi.org/10.14778/1453856.1453892
31
Burdick D, Deshpande P M, Jayram T S, Ramakrishnan R, Vaithyanathan S. OLAP over uncertain and imprecise data. The VLDB Journal—The International Journal on Very Large Data Bases, 2007, 16(1): 123–144
32
Qi Y, Jain R, Singh S, Prabhakar S. Threshold query optimization for uncertain data. In: Proceedings of ACM SIGMOD International Conference on Management of Data. 2010, 315–326 https://doi.org/10.1145/1807167.1807203
33
Tao Y F, Cheng R, Xiao X K, Ngai W K, Kao B, Prabhakar S. Indexing multi-dimensional uncertain data with arbitrary probability density functions. In: Proceedings of the 31st International Conference on Very Large Data Bases. 2005, 922–933
34
Tao Y F, Xiao X K, Cheng R. Range search on multidimensional uncertain data. ACM Transactions on Database Systems, 2007, 32(3): 15 https://doi.org/10.1145/1272743.1272745
35
Dalvi N, Suciu D. Efficient query evaluation on probabilistic databases. In: Proceedings of International Conference on Very Large Databases. 2008, 16(1): 119–128
36
Cheng R, Kalashnikov D V, Prabhakar S. Evaluating probabilistic queries over imprecise data. In: Proceedings of ACM SIGMOD International Conference on Management of Data. 2003, 551–562 https://doi.org/10.1145/872757.872823
37
Pei J, Jiang B, Lin X M, Yuan Y D. Probabilistic skylines on uncertain data. In: Proceedings of the 33rd International Conference on Very Large Data Bases. 2007, 15–26
38
Dellis E, Seeger B. Efficient computation of reverse skyline queries. In: Proceedings of the 33rd International Conference on Very Large Data Bases. 2007, 291–302
39
Soliman M A, Ilyas I F, Chang K C C. Top-k query processing in uncertain databases. In: Proceedings of the 23rd IEEE International Conference on Data Engineering. 2007, 896–905 https://doi.org/10.1109/ICDE.2007.367935
40
Ge T, Zdonik S, Madden S. Top-k queries on uncertain data: on score distribution and typical answers. In: Proceedings of ACM SIGMOD International Conference on Management of Data. 2009, 375–388 https://doi.org/10.1145/1559845.1559886
41
Wang G R, Huo H, Han D H, Hui X Y. Query processing and optimization techniques over streamed fragmented XML. World Wide Web, 2008, 11(3): 339–359 https://doi.org/10.1007/s11280-007-0041-x
42
Barbosa D, Mignet L, Veltri P. Studying the XML Web: gathering statistics from an XML sample. World Wide Web, 2006, 9(2): 187–212 https://doi.org/10.1007/s11280-006-8437-6
43
Kooi R. The optimization of queries in relational databases. Dissertation for the Doctoral Degree. Cleveland, Ohio: Case Western Reserve University, 1980
44
Piatetsky-Shapiro G, Connell C. Accurate estimation of the number of tuples satisfying a condition. ACM SIGMOD Record, 1984, 14(2): 256–276 https://doi.org/10.1145/971697.602294
45
Ioannidis Y, Poosala V. Balancing histogram optimality and practicality for query result size estimation. ACM SIGMOD Record, 1995, 24(2): 233–244 https://doi.org/10.1145/568271.223841
46
Gunopulos D, Kollios G, Tsotras V J, Domeniconi C. Approximating multi-dimensional aggregate range queries over real attributes. ACM SIGMOD Record, 2000, 29(2): 463–474. https://doi.org/10.1145/335191.335448
47
Bruno N, Chaudhuri S, Gravano L. STHoles: a multidimensional workload aware histogram. ACM SIGMOD Record, 2001, 30(2): 211–222 https://doi.org/10.1145/376284.375686
48
Haas P J, Naughton J F, Seshadri S, Swami A N. Selectivity and cost estimation for joins based on random sampling. Journal of Computer and System Sciences, 1996, 52(3): 550–569 https://doi.org/10.1006/jcss.1996.0041
49
Lipton R J, Naughton J F. Query size estimation by adaptive sampling. Journal of Computer and System Sciences, 1995, 51(1): 18–25 https://doi.org/10.1006/jcss.1995.1050
50
Olken F. Random sampling from databases. Dissertation for the Doctoral Degree. University of California at Berkeley, 1997
Chaudhuri S, Das G, Narasayya V R. Optimized stratified sampling for approximate query processing. ACM Transactions on Database Systems, 2007, 32(2): 9 https://doi.org/10.1145/1242524.1242526
53
Zhang Y, Yang L, Wang H Z. Range query estimation for dirty data management system. In: Proceedings of International Conference on Web-Age Information Management. 2012, 152–164 https://doi.org/10.1007/978-3-642-32281-5_15