Deep learning has been the most popular feature learning method used for a variety of computer vision applications in the past 3 years. Not surprisingly, this technique, especially the convolutional neural networks (ConvNets) structure, is exploited to identify the human actions, achieving great success. Most algorithms in existence directly adopt the basic ConvNets structure, which works pretty well in the ideal situation, e.g., under stable lighting conditions. However, its performance degrades significantly when the intra-variation in relation to image appearance occurs within the same category. To solve this problem, we propose a new method, integrating the semantically meaningful attributes into deep learning’s hierarchical structure. Basically, the idea is to add simple yet effective attributes to the category level of ConvNets such that the attribute information is able to drive the learning procedure. The experimental results based on three popular action recognition databases show that the embedding of auxiliary multiple attributes into the deep learning framework improves the classification accuracy significantly.
Lao W L, Han J G. Automatic video-based human motion analyzer for consumer surveillance system. IEEE Transactions on Consumer Electronics, 2009, 55(2): 591–598 https://doi.org/10.1109/TCE.2009.5174427
2
Zhang B C, Alessandro P, Li Z G, Vittorio M, Liu J Z, Ji R R. Bounding multiple gaussians uncertainty with application to object tracking. International Journal of Computer Vision, 2016, 1–16 https://doi.org/10.1016/j.jvlc.2016.02.001
3
Chen C, Liu M Y, Zhang B C, Han J G, Jiang J J, Liu H. 3D action recognition using multi-temporal depth motion maps and fisher vector. In: Proceedings of the 25th International Joint Conference on Artificial Intelligence. 2016, 3331–3337
4
Han J G, Dirk F, De With P H N. Broadcast court-net sports video analysis using fast 3-D camera modeling. IEEE Transactions on Circuits and Systems for Video Technology, 2008, 18(11): 1628–1638 https://doi.org/10.1109/TCSVT.2008.2005611
5
Ding G G, Guo Y C, Zhou J L, Gao Y. Large-scale cross-modality search via collective matrix factorization hashing. IEEE Transactions on Image Processing, 2016, 25(11): 5427–5440 https://doi.org/10.1109/TIP.2016.2607421
6
Lin Z J, Ding G G, Han J G, Wang J M. Cross-view retrieval via probability-based semantics-preserving hashing. IEEE Transactions on Cybernetics, 2016 https://doi.org/10.1109/TCYB.2016.2608906
7
Dalal N, Triggs B. Histograms of oriented gradients for human detection. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2005, 886–893 https://doi.org/10.1109/cvpr.2005.177
8
Laptev I, Marszałek M, Schmid C, Rozenfeld B. Learning realistic human actions from movies. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2008, 1–8 https://doi.org/10.1109/cvpr.2008.4587756
9
Dalal N, Triggs B, Schmid C. Human detection using oriented histograms of flow and appearance. In: Proceedings of European Conference on Computer Vision. 2006, 428–441 https://doi.org/10.1007/11744047_33
10
Wang H, Schmid C. Action recognition with improved trajectories. In: Proceedings of IEEE International Conference on Computer Vision. 2013, 3551–3558 https://doi.org/10.1109/iccv.2013.441
11
Li F F, Pietro P. A bayesian hierarchical model for learning natural scene categories. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2005, 524–531
12
Lee H, Battle A, Raina R, Ng A Y. Efficient sparse coding algorithms. In: Proceedings of Advances in Neural Information Processing Systems. 2006, 801–808
13
Yang Y, Wang X, Liu Q, Xu M L, Yu L. A bundled-optimization model of multiview dense depth map synthesis for dynamic scene reconstruction. Information Sciences, 2015, 320: 306–319 https://doi.org/10.1016/j.ins.2014.11.014
14
Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks. In: Proceedings of Advances in Neural Information Processing Systems. 2012, 1097–1105
15
Karpathy A, Toderici G, Shetty S, Leung T, Sukthankar R, Li F F. Large-scale video classification with convolutional neural networks. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2014, 1725–1732 https://doi.org/10.1109/cvpr.2014.223
16
Price A L, Patterson N J, Plenge R M, Weinblatt M E, Shadick N A, Reich D. Principal components analysis corrects for stratification in genome-wide association studies. Nature Genetics, 2006, 38(8): 904–909 https://doi.org/10.1038/ng1847
17
Liu A A, Su Y T, Jia P P, Gao Z, Hao T, Yang Z X. Multipe/singleview human action recognition via part-induced multitask structural learning. IEEE Transactions on Cybernetics, 2015, 45(6): 1194–1208 https://doi.org/10.1109/TCYB.2014.2347057
18
Liu A A, Xu N, Su Y T, Lin H, Hao T, Yang Z X. Single/multi-view human action recognition via regularized multi-task learning. Neurocomputing, 2015, 151: 544–553 https://doi.org/10.1016/j.neucom.2014.04.090
19
Xu N, Liu A A, Nie W Z, Wong Y Y, Li F W, Su Y T. Multi-modal & multi-view & interactive benchmark dataset for human action recognition. In: Proceedings of the 23rd ACM International Conference on Multimedia. 2015, 1195–1198 https://doi.org/10.1145/2733373.2806315
20
Liu A A, Nie W Z, Su Y T, Ma L, Hao T, Yang Z X. Coupled hidden conditional random fields for RGB-D human action recognition. Signal Processing, 2015, 112: 74–82 https://doi.org/10.1016/j.sigpro.2014.08.038
21
Yang Y, Wang X, Guan T, Shen J L, Yu L. A multi-dimensional image quality prediction model for user-generated images in social networks. Information Sciences, 2014, 281: 601–610 https://doi.org/10.1016/j.ins.2014.03.016
22
Zhu Y M, Li K, Jiang J M. Video super-resolution based on automatic key-frame selection and feature-guided variational optical flow. Signal Processing: Image Communication, 2014, 29(8): 875–886 https://doi.org/10.1016/j.image.2014.06.005
23
Gao Y, Wang M, Tao D C, Ji R R, Dai Q H. 3-D object retrieval and recognition with hypergraph analysis. IEEE Transactions on Image Processing, 2012, 21(9): 4290–4303 https://doi.org/10.1109/TIP.2012.2199502
24
Gao Y, Wang M, Ji R R, Wu X D, Dai Q H. 3-D object retrieval with hausdorff distance learning. IEEE Transactions on Industrial Electronics, 2014, 61(4): 2088–2098 https://doi.org/10.1109/TIE.2013.2262760
25
Ji R R, Gao Y, Hong R C, Liu Q, Tao D C, Li X L. Spectral-spatial constraint hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(3): 1811–1824 https://doi.org/10.1109/TGRS.2013.2255297
26
Lu X Q, Zheng X T, Li X L. Latent semantic minimal hashing for image retrieval. IEEE Transactions on Image Processing, 2016, 26(1): 355–368 https://doi.org/10.1109/TIP.2016.2627801
27
Lu X Q, Li X L, Mou L C. Semi-supervised multitask learning for scene recognition. IEEE Transactions on Cybernetics, 2015, 45(9): 1967–1976 https://doi.org/10.1109/TCYB.2014.2362959
28
Zhang D W, Han J W, Han J G, Shao L. Cosaliency detection based on intrasaliency prior transfer and deep intersaliency mining. IEEE Transactions on Neural Networks and Learning Systems, 2016, 27(6): 1163–1176 https://doi.org/10.1109/TNNLS.2015.2495161
29
Simonyan K, Zisserman A. Two-stream convolutional networks for action recognition in videos. In: Proceedings of Advances in Neural Information Processing Systems. 2014, 568–576
30
Ryoo M S, Rothrock B, Matthies L. Pooled motion features for firstperson videos. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015, 896–904
31
Wang L M, Qiao Y, Tang X O. Action recognition with trajectorypooled deep-convolutional descriptors. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015, 4305–4314
32
Liu J G, Yu Q, Javed O, Ali S, Tamrakar A, Divakaran A, Cheng H, Sawhney H. Video event recognition using concept attributes. In: Proceedings of IEEE Workshop on Applications of Computer Vision. 2013, 339–346 https://doi.org/10.1109/wacv.2013.6475038
33
Soomro K, Zamir A R, Shah M. Ucf101: a dataset of 101 human actions classes from videos in the wild. 2012, arXiv preprint arXiv:1212.0402
34
Deng J, Dong W, Socher R, Li L J, Li K, Li F F. Imagenet: A largescale hierarchical image database. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2009, 248–255
35
Jia Y Q, Shelhamer E, Donahue J, Karayev S, Long J, Girshick R, Guadarrama S, Darrell T. Caffe: convolutional architecture for fast feature embedding. In: Proceedings of the 22nd ACM International Conference on Multimedia. 2014, 675–678 https://doi.org/10.1145/2647868.2654889
36
Wang H, Kläser A, Schmid C, Liu C L. Dense trajectories and motion boundary descriptors for action recognition. International Journal of Computer Vision, 2013, 103(1): 60–79 https://doi.org/10.1007/s11263-012-0594-8
37
Ng J Y H, Hausknecht M, Vijayanarasimhan S, Vinyals O, Monga R, Toderici G. Beyond short snippets: deep networks for video classification. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2015, 4694–4702
38
Schuldt C, Laptev I, Caputo B. Recognizing human actions: a local svm approach. In: Proceedings of the 17th International Conference on Pattern Recognition. 2004, 32–36 https://doi.org/10.1109/icpr.2004.1334462
39
Kuehne H, Jhuang H, Garrote E, Poggio T, Serre T. Hmdb: a large video database for human motion recognition. In: Proceedings of IEEE International Conference on Computer Vision. 2011, 2556–2563 https://doi.org/10.1109/iccv.2011.6126543
40
Chang C C, Lin C J. Libsvm: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology, 2011, 2(3): 27 https://doi.org/10.1145/1961189.1961199
41
Bilen H, Fernando B, Gavves E, Vedaldi A, Gould S. Dynamic image networks for action recognition. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. 2016 https://doi.org/10.1109/cvpr.2016.331
42
Bagheri M, Gao Q G, Escalera S, Clapes A, Nasrollahi K, Holte M, Moeslund T. Keep it accurate and diverse: enhancing action recognition performance by ensemble learning. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition Workshops. 2015, 22–29 https://doi.org/10.1109/cvprw.2015.7301332
43
Ho T K. The random subspace method for constructing decision forests. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(8): 832–844 https://doi.org/10.1109/34.709601