Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

邮发代号 80-970

2019 Impact Factor: 1.275

Frontiers of Computer Science  2020, Vol. 14 Issue (4): 144308   https://doi.org/10.1007/s11704-019-8421-9
  本期目录
Low-rank representation based robust face recognition by two-dimensional whitening reconstruction
Shuo FENG1, Changpeng WANG2(), Hong SHU1, Tingyu ZHANG1
1. School of ConstructionMachinery, Chang’an University, Xi’an 710064, China
2. School of Science, Chang’an University, Xi’an 710064, China
 全文: PDF(106 KB)  
收稿日期: 2019-01-22      出版日期: 2020-03-11
Corresponding Author(s): Changpeng WANG   
 引用本文:   
. [J]. Frontiers of Computer Science, 2020, 14(4): 144308.
Shuo FENG, Changpeng WANG, Hong SHU, Tingyu ZHANG. Low-rank representation based robust face recognition by two-dimensional whitening reconstruction. Front. Comput. Sci., 2020, 14(4): 144308.
 链接本文:  
https://academic.hep.com.cn/fcs/CN/10.1007/s11704-019-8421-9
https://academic.hep.com.cn/fcs/CN/Y2020/V14/I4/144308
1 G Liu, Z, Lin S Yan, J Sun, Y Yu, Y. MaRobust recovery of subspace structures by low-rank representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1): 171–184
https://doi.org/10.1109/TPAMI.2012.88
2 H Zhang, C Gong, J, Qian B Zhang, C Xu, J Yang. Efficient recovery of low-rank matrix via double nonconvex nonsmooth rank minimization. IEEE Transactions on Neural Networks, 2019, 30(10): 2916–2925
https://doi.org/10.1109/TNNLS.2019.2900572
3 Y Wang, V Morariu, L S Davis. Unsupervised feature extraction inspired by latent low-rank representation. In: Proceedings of the 2005 IEEE Winter Conference on Applications of Computer Vision. 2015, 542–549
https://doi.org/10.1109/WACV.2015.78
4 Z Lei, M Pietikainen, S Z Li. Learning discriminant face descriptor. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(2): 289–302
https://doi.org/10.1109/TPAMI.2013.112
5 X Shi, Z Guo, F, Nie L Yang, J You, D Tao. Two-dimensional whitening reconstruction for enhancing robustness of principal component analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 38(10): 2130–2136
https://doi.org/10.1109/TPAMI.2015.2501810
6 X Zhu, Z Ghahramani, J Lafferty. Semi-supervised learning using gaussian fields and harmonic functions. In: Proceedings of the 20th International Conference on Machine Learning. 2003, 912–919
7 G Liu, S Yan. Latent low-rank representation for subspace segmentation and feature extraction. In: Proceedings of the IEEE International Conference on Computer Vision. 2011, 1615–1622
https://doi.org/10.1109/ICCV.2011.6126422
8 L, Fei Y Xu, X Fang, J Yang. Low rank representation with adaptive distance penalty for semi-supervised subspace classification. Pattern Recognition, 2017, 67: 252–262
https://doi.org/10.1016/j.patcog.2017.02.017
9 J Wen, B Zhang, Y, Xu J Yang, N Han. Adaptive weighted nonnegative low-rank representation. Pattern Recognition, 2018, 81: 326–340
https://doi.org/10.1016/j.patcog.2018.04.004
[1] FCS-0016-18421-SF_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed