1. Institute of Artificial Intelligence, Beihang University, Beijing 100191, China 2. School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China 3. School of Software, Tsinghua University, Beijing 100084, China 4. Department of Computer Engineering, Gachon University, Seongnam 13120, South Korea 5. Institute Charles Delaunay-LM2S FRE CNRS 2019, University of Technology of Troyes, Troyes 10010, France 6. School of Instrumentation Science and Opto-electronics Engineering, Beihang University, Beijing 100191, China 7. Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
Temporal action proposal generation aims to output the starting and ending times of each potential action for long videos and often suffers from high computation cost. To address the issue, we propose a new temporal convolution network called Multipath Temporal ConvNet (MTCN). In our work, one novel high performance ring parallel architecture based is further introduced into temporal action proposal generation in order to respond to the requirements of large memory occupation and a large number of videos. Remarkably, the total data transmission is reduced by adding a connection between multiplecomputing load in the newly developed architecture. Compared to the traditional Parameter Server architecture, our parallel architecture has higher efficiency on temporal action detection tasks with multiple GPUs. We conduct experiments on ActivityNet-1.3 and THUMOS14, where our method outperformsother state-of-art temporal action detection methods with high recall and high temporal precision. In addition, a time metric is further proposed here to evaluate the speed performancein the distributed training process.
K Muhammad , R Hamza , J Ahmad , J Lloret , H Wang , S Baik . Secure surveillance framework for IoT systems using probabilistic image encryption. IEEE Transactions on Industrial Informatics, 2018, 14( 8): 3679– 3689
2
M Sajjad , I U Haq , J Lloret , W Ding , K Muhammad . Robust image hashing based efficient authentication for smart industrial environment. IEEE Transactions on Industrial Informatics, 2019, 15( 12): 6541– 6550
3
T Wang , M Qiao , Z Lin , C Li , H Snoussi , Z Liu , C Choi . Generative neural networks for anomaly detection in crowded scenes. IEEE Transactions on Information Forensics and Security, 2018, 14( 5): 1390– 1399
4
K Muhammad , S Khan , V Palade , I Mehmood , V H De Albuquerque . Edge intelligence-assisted smoke detection in foggy surveillance environments. IEEE Transactions on Industrial Informatics, 2019, 16( 2): 1067– 1075
5
T Wang , Z Miao , Y Chen , Y Zhou , G Shan , H Snoussi . Aed-net: an abnormal event detection network. Engineering, 2019, 5( 5): 930– 939
6
Caba Heilbron F, Escorcia V, Ghanem B, Carlos Niebles J. Activitynet: a large-scale video benchmark for human activity understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015, 961−970
7
Jiang Y G, Liu J, Zamir A. R, Toderici G, Laptev I, Shah M, Sukthankar R. Thumos challenge: action recognition with a large number of classes. 2014
8
Lin T, Zhao X, Su H, Wang C, Yang M. BSN: boundary sensitive network for temporal action proposal generation. In: Proceedings of the European Conference on Computer Vision. 2018, 3−19
9
Buch S, Escorcia V, Shen C, Ghanem B, Carlos Niebles J. SST: singlestream temporal action proposals. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017, 2911−2920
10
Caba Heilbron F, Carlos Niebles J, Ghanem B. Fast temporal activity proposals for efficient detection of human actions in untrimmed videos. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016, 1914−1923
11
V Escorcia, F. C Heilbron, J. C Niebles, B Ghanem. Daps: deep action proposals for action understanding. In: Proceedings of the European Conference on Computer Vision. 2016, 768– 784
12
Shou Z, Wang D, Chang SF. Temporal action localization in untrimmed videos via multi-stage cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016, 1049−1058
13
Dean J, Corrado G, Monga R, Chen K, Devin M, Mao M, Senior A, Tucker P, Yang K, Le Q V, et al. Large scale distributed deep networks. In: Proceedings of the Advances in Neural Information Processing Systems. 2012, 1223–1231
14
Karaman S, Seidenari L, Del Bimbo A. Fast saliency based pooling of fisher encoded dense trajectories. In: Proceedings of the European Conference on Computer Vision THUMOS Workshop. 2014
15
L Wang , Y Qiao , X Tang . Action recognition and detection by combining motion and appearance features. THUMOS14 Action Recognition Challenge, 2014, 1( 2): 2–
16
Wang T, Chen Y, Lin Z, Zhu A, Li Y, Snoussi H, Wang H. Recapnet: action proposal generation mimicking human cognitive process. IEEE Transactions on Cybernetics, 2020, DOI:
17
Gao J, Yang Z, Chen K, Sun C, Nevatia R. Turn tap: temporal unit regression network for temporal action proposals. In: Proceedings of the IEEE International Conference on Computer Vision. 2017, 3628−3636
18
Zhao Y, Xiong Y, Wang L, Wu Z, Tang X, Lin D. Temporal action detection with structured segment networks. In: Proceedings of the IEEE International Conference on Computer Vision. 2017, 2914−2923
19
M Jian , K M Lam , J Dong , L Shen . Visual-patch-attention-aware saliency detection. IEEE Transactions on Cybernetics, 2014, 45( 8): 1575– 1586
20
M Jian , Q Qi , J Dong , Y Yin , K M Lam . Integrating qdwd with pattern distinctness and local contrast for underwater saliency detection. Journal of Visual Communication and Image Representation, 2018, 53 : 31– 41
21
M Jian , Q Qi , H Yu , J Dong , C Cui , X Nie , H Zhang , Y Yin , K M Lam . The extended marine underwater environment database and baseline evaluations. Applied Soft Computing, 2019, 80 : 425– 437
22
T Wang , Y Chen , H Lv , J Teng , H Snoussi , F Tao . Online detection of action start via soft computing for smart city. IEEE Transactions on Industrial Informatics, 2020, 17( 1): 524– 533
23
Wang H, Kläser A, Schmid C, Liu C L. Action recognition by dense trajectories. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2011, 3169−3176
24
Feichtenhofer C, Pinz A, Zisserman A. Convolutional two-stream network fusion for video action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016, 1933−1941
25
L Wang, Y Xiong, Z Wang, Y Qiao, D Lin, X Tang, L Van Gool. Temporal segment networks: towards good practices for deep action recognition. In: Proceedings of the European Conference on Computer Vision. 2016, 20– 36
26
Tran D, Bourdev L, Fergus R, Torresani L, Paluri M. Learning spatiotemporal features with 3d convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision. 2015, 4489−4497
27
J Dean , S Ghemawat . Mapreduce: simplified data processing on large clusters. Communications of the ACM, 2008, 51( 1): 107– 113
28
Y Low , D Bickson , J Gonzalez , C Guestrin , A Kyrola , J M Hellerstein . Distributed graphlab: a framework for machine learning and data mining in the cloud. Proceedings of the VLDB Endowment, 2012, 5( 8): 716– 727
29
Hu J, Shen L, Sun G. Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018, 7132−7141
30
Simonyan K, Zisserman A. Two-stream convolutional networks for action recognition in videos. In: Proceedings of the 27th International Conference on Neural Information Processing Systems. 2014, 568−576
31
Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado G S, Davis A, Dean J, Devin M, et al. Tensorflow: Large-scale machine learning on heterogeneous distributed systems. 2016, arXiv preprint arXiv: 1603.04467
32
Ioffe S, Szegedy C. Batch normalization: accelerating deep network training by reducing internal covariate shift. 2015, arXiv preprint arXiv: 1502.03167
33
He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016, 770−778
34
X Dai, B Singh, G Zhang, L. S Davis, Chen Y Qiu. Temporal context network for activity localization in videos. In: Proceedings of the IEEE International Conference on Computer Vision. 2017, 5793– 5802
35
Ghanem B, Niebles J C, Snoek C, Heilbron F C, Alwassel H, Khrisna R, Escorcia V, Hata K, Buch S. Activitynet challenge 2017 summary. 2017, arXiv preprint arXiv: 1710.08011