Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

邮发代号 80-970

2019 Impact Factor: 1.275

Frontiers of Computer Science  2023, Vol. 17 Issue (3): 173319   https://doi.org/10.1007/s11704-022-1623-6
  本期目录
Exploring the tidal effect of urban business district with large-scale human mobility data
Hongting NIU1(), Ying SUN2,3, Hengshu ZHU3, Cong GENG1, Jiuchun YANG4, Hui XIONG5, Bo LANG1
1. School of Computer Science and Engineering, Beihang University, Beijing 100191, China
2. Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing 100086, China
3. Baidu Talent Intelligence Center, Baidu Inc., Beijing 100085, China
4. Business School, Imperial College London, London SW72AZ, UK
5. Artificial Intelligence Thrust, The Hong Kong University of Science and Technology, Guangzhou 510030, China
 全文: PDF(18787 KB)   HTML
Abstract

Business districts are urban areas that have various functions for gathering people, such as work, consumption, leisure and entertainment. Due to the dynamic nature of business activities, there exists significant tidal effect on the boundary and functionality of business districts. Indeed, effectively analyzing the tidal patterns of business districts can benefit the economic and social development of a city. However, with the implicit and complex nature of business district evolution, it is non-trivial for existing works to support the fine-grained and timely analysis on the tidal effect of business districts. To this end, we propose a data-driven and multi-dimensional framework for dynamic business district analysis. Specifically, we use the large-scale human trajectory data in urban areas to dynamically detect and forecast the boundary changes of business districts in different time periods. Then, we detect and forecast the functional changes in business districts. Experimental results on real-world trajectory data clearly demonstrate the effectiveness of our framework on detecting and predicting the boundary and functionality change of business districts. Moreover, the analysis on practical business districts shows that our method can discover meaningful patterns and provide interesting insights into the dynamics of business districts. For example, the major functions of business districts will significantly change in different time periods in a day and the rate and magnitude of boundaries varies with the functional distribution of business districts.

Key wordsbusiness district    trajectory    functionality detection    tidal effect    boundary detection    visiting score
收稿日期: 2021-11-01      出版日期: 2022-09-08
Corresponding Author(s): Hongting NIU   
 引用本文:   
. [J]. Frontiers of Computer Science, 2023, 17(3): 173319.
Hongting NIU, Ying SUN, Hengshu ZHU, Cong GENG, Jiuchun YANG, Hui XIONG, Bo LANG. Exploring the tidal effect of urban business district with large-scale human mobility data. Front. Comput. Sci., 2023, 17(3): 173319.
 链接本文:  
https://academic.hep.com.cn/fcs/CN/10.1007/s11704-022-1623-6
https://academic.hep.com.cn/fcs/CN/Y2023/V17/I3/173319
Fig.1  
Category No. Category No.
Service 115,018 Education 38,451
Transportation 38,502 Car service 28,537
Route 39,106 Entertainment 27,059
Culture 36,532 Beauty 163,358
Real estate 182,036 Food 29,248
Natural Landscape 131 Railway 36
Sport 7,405 Tourist spot 4,940
Financial 18,732 Medical 34,630
Shopping 313,459 Government 31,393
Hotel 23,343 Enterprise 180,587
Tab.1  
Fig.2  
Name Location Center Lon. Center Lat.
Chunxi Road City center 104.082137 30.660715
Shuangnan West of city 104.029895 30.652023
Luomashi North of city 104.082446 30.696791
Jianshe Road East of city 104.123791 30.655931
Wuhouci South of city 104.055659 30.648898
High-tech Dis. South of city 104.071094 30.588628
Tab.2  
Notation Description
N?M Number of city grids
ξ Time slices in a whole day
Td Drop-off flow
Tp Pick-up flow
Tdd Drop-off flow in the day
Tpd Pick-up flow in the day
Tdn Drop-off flow in the night
Tpn Pick-up flow in the night
Pn POI number
Pcn POI category number
Pci POI category name (20)
Pnci POI number of categories (20)
Gloc Location of grid (ID)
GL The most POI class
Gs The most POI subclass
GR Weather remote in the city
Gm Weather long/short mileage of order
Vml Number of long mileage orders
Vms Number of short mileage orders
Sboundary The grade of boundary score
Svisiting The grade of visiting score
Tab.3  
Fig.3  
Fig.4  
Notation Description Dimension
Gloc Location of grid 2
Tp Pick-up flow 1
Td dorp-off flow 1
[Tp1,Tp2,...] Pick-up flow 8
in surrounding 8 grids
[Td1,Td2,...] Drop-off flow 8
in surrounding 8 grids
Pnci POI number of categories 20
Tab.4  
Data set size Top 100 Top 300 Top 500 Top 1000
1 day 0.9132 0.9677 0.9512 0.9432
3 days 0.9569 0.9659 0.9682 0.9678
7 days 0.9821 0.9814 0.9793 0.9784
Tab.5  
Index RF DT NB SVM
Precision 0.8612 0.8522 0.5437 0.8072
Recall 0.9556 0.9780 0.9763 0.9604
F-Score 0.9786 0.9703 0.9813 0.9752
Tab.6  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Index 144-time slices 24-time slices
Precision Recall F-Score Precision Recall F-Score
LSTM 0.8640 0.9761 0.9166 0.8416 0.9434 0.8996
GBDT 0.7272 0.9317 0.8168 0.7628 0.9298 0.8381
DT 0.6230 0.9737 0.7598 0.6308 0.9350 0.7534
RF 0.8121 0.8226 0.8173 0.8520 0.8739 0.8628
SVM 0.6190 0.9037 0.7347 0.6274 0.9197 0.7454
LR 0.6190 0.9739 0.7569 0.6231 0.9802 0.7619
Tab.7  
Index (a) Original (b) Optimal
Pori Rori Fori Popt Ropt Fopt
Total 0.8640 0.9761 0.9166 0.8826 0.9734 0.9258
Weekdays 0.8856 0.9756 0.9284 0.9011 0.9729 0.9356
Weekends 0.8448 0.9671 0.9018 0.8603 0.9685 0.9112
Tab.8  
Fig.9  
Index RF GNB LSTM
Topic1 Topic2 Ave. Topic1 Topic2 Ave. Topic1 Topic2 Ave.
Wuhouci 0.7083 0.6667 0.6875 0.6250 0.5833 0.6042 0.8333 0.7500 0.7917
Shuangnan 0.5417 0.6250 0.5833 0.5000 0.4583 0.4792 0.7083 0.6250 0.6667
Luomashi 0.5417 0.7083 0.6250 0.7500 0.5833 0.6667 0.6667 0.7083 0.6875
Jianshe Road 0.7083 0.6250 0.6667 0.7500 0.8333 0.7917 0.8750 0.8333 0.8542
High-tech Dis. 0.5833 0.7083 0.6458 0.4583 0.5417 0.5000 0.7917 0.6250 0.7084
Chunxi Road 0.8750 0.8333 0.8542 0.8333 0.7917 0.8125 0.9583 0.8333 0.8958
Average 0.6597 0.6944 0.6875 0.6528 0.6319 0.6434 0.8056 0.7292 0.7674
Tab.9  
Fig.10  
Fig.11  
Fig.12  
  
  
  
  
  
  
  
1 F, Wang X, Gao Z Xu . Identification and classification of urban commercial districts at block scale. Geographical Research, 2015, 34( 6): 1125– 1134
2 J, Xiao Y, Shen J, Ge R, Tateishi C, Tang Y, Liang Z Huang . Evaluating urban expansion and land use change in Shijiazhuang, China, by using GIS and remote sensing. Landscape and Urban Planning, 2006, 75( 1−2): 69– 80
3 D D Institute. 2018 China Urban Business Circle Travel and Consumption Analysis Report. Business district radiation map drawn by didi travel big data. See 199it website, 2018
4 Star News Red. Schematic diagram of the distribution of Chengdu’s business districts and the density levels of business districts. See Sohu website, 2020
5 J M Kleinberg . Authoritative sources in a hyperlinked environment. Journal of ACM, 1999, 46( 5): 604– 632
6 X, Shi Z, Chen H, Wang D Y, Yeung W K, Wong W C Woo. Convolutional LSTM network: a machine learning approach for precipitation nowcasting. In: Proceedings of the 28th International Conference on Neural Information Processing Systems. 2015, 802– 810
7 N J, Yuan Y, Zheng X, Xie Y, Wang K, Zheng H Xiong . Discovering urban functional zones using latent activity trajectories. IEEE Transactions on Knowledge and Data Engineering, 2015, 27( 3): 712– 725
8 A, Graves N Jaitly. Towards end-to-end speech recognition with recurrent neural networks. In: Proceedings of the 31st International Conference on International Conference on Machine Learning. 2014, II-1764− II-1772
9 H, Niu H, Zhu Y, Sun X, Lu J, Sun Z, Zhao H, Xiong B Lang . Exploring the risky travel area and behavior of car-hailing service. ACM Transactions on Intelligent Systems and Technology, 2022, 13( 1): 9
10 G, Ke Q, Meng T, Finley T, Wang W, Chen W, Ma Q, Ye T Y Liu. LightGBM: a highly efficient gradient boosting decision tree. In: Proceedings of the 31st International Conference on Neural Information Processing Systems. 2017, 3149– 3157
11 A, Pérez P, Larrañaga I Inza . Supervised classification with conditional Gaussian networks: increasing the structure complexity from naive Bayes. International Journal of Approximate Reasoning, 2006, 43( 1): 1– 25
12 M, Dumont R, Marée L, Wehenkel P Geurts. Fast multi-class image annotation with random subwindows and multiple output randomized trees. In: Proceedings of the 4th International Conference on Computer Vision Theory and Applications. 2009, 196– 203
13 L Breiman . Random forests. Machine Learning, 2001, 45( 1): 5– 32
14 J A K, Suykens J Vandewalle . Least squares support vector machine classifiers. Neural Processing Letters, 1999, 9( 3): 293– 300
15 M, Schmidt Roux N, Le F Bach. Minimizing finite sums with the stochastic average gradient. Mathematical Programming, 2017, 162( 1– 2): 1– 2
16 F, Pedregosa G, Varoquaux A, Gramfort V, Michel B, Thirion O, Grisel M, Blondel P, Prettenhofer R, Weiss V, Dubourg J, Vanderplas A, Passos D, Cournapeau M, Brucher M, Perrot É Duchesnay . Scikit-learn: machine learning in python. The Journal of Machine Learning Research, 2011, 12: 2825– 2830
17 W, Yu T, Ai S Shao . The analysis and delimitation of Central Business District using network kernel density estimation. Journal of Transport Geography, 2015, 45: 32– 47
18 D L Huff . A probabilistic analysis of shopping center trade areas. Land Economics, 1963, 39( 1): 81– 90
19 B, Hao S, Dong Y C, Hu X, Liu Y J, Gao Y D Zhang . Urban business zones delimitation method based on the fusion of multidimensional characteristics. Geography and Geo-Information Science, 2017, 33( 5): 56– 62
20 G, Qi X, Li S, Li G, Pan Z, Wang D Zhang. Measuring social functions of city regions from large-scale taxi behaviors. In: Proceedings of 2011 IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops). 2011, 384– 388
21 J, Yuan Y, Zheng X Xie. Discovering regions of different functions in a city using human mobility and POIs. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2012, 186– 194
22 H, Dong M, Wu X, Ding L, Chu L, Jia Y, Qin X Zhou . Traffic zone division based on big data from mobile phone base stations. Transportation Research Part C: Emerging Technologies, 2015, 58: 278– 291
23 Y, Liu F, Wang Y, Xiao S Gao . Urban land uses and traffic ’source-sink areas’: evidence from GPS-enabled taxi data in Shanghai. Landscape and Urban Planning, 2012, 106( 1): 73– 87
24 G, Pan G, Qi Z, Wu D, Zhang S Li . Land-use classification using taxi GPS traces. IEEE Transactions on Intelligent Transportation Systems, 2013, 14( 1): 113– 123
25 P, Zhang Z, Bao Y, Li G, Li Y, Zhang Z Peng. Trajectory-driven influential billboard placement. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2018, 2748– 2757
26 Y, Sun H, Zhu F, Zhuang J, Gu Q He. Exploring the urban region-of-interest through the analysis of online map search queries. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2018, 2269– 2278
27 S, Wang Z, Bao J S, Culpepper G Cong . A survey on trajectory data management, analytics, and learning. ACM Computing Surveys, 2022, 54( 2): 39
28 D, Wang T, Miwa T Morikawa . Big trajectory data mining: a survey of methods, applications, and services. Sensors, 2020, 20( 16): 4571
29 M, Lu Z, Wang X Yuan. TrajRank: exploring travel behaviour on a route by trajectory ranking. In: Proceedings of 2015 IEEE Pacific Visualization Symposium (PacificVis). 2015, 311– 318
30 Y, Zheng G, Zhao J Liu. A novel grid based k-means cluster method for traffic zone division. In: Proceedings of the 2nd International Conference on Cloud Computing and Big Data. 2015, 165– 178
31 G, Sun B, Chang L, Zhu H, Wu K, Zheng R Liang . TZVis: visual analysis of bicycle data for traffic zone division. Journal of Visualization, 2019, 22( 6): 1193– 1208
32 Y, Miyagi M, Onishi C, Watanabe T, Itoh M Takatsuka . Classification and visualization for symbolic people flow data. Journal of Visual Languages & Computing, 2017, 43: 91– 102
33 H, Ren S, Ruan Y, Li J, Bao C, Meng R, Li Y Zheng. MtrajRec: map-constrained trajectory recovery via Seq2Seq multi-task learning. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. 2021, 1410– 1419
34 P, Han J, Wang D, Yao S, Shang X Zhang. A graph-based approach for trajectory similarity computation in spatial networks. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. 2021, 556– 564
35 H, Wu L, Liu Y, Yu Z, Peng H, Jiao Q Niu . An agent-based model simulation of human mobility based on mobile phone data: how commuting relates to congestion. ISPRS International Journal of Geo-Information, 2019, 8( 7): 313
36 X, Chen J, Wang K Xie. TrafficStream: a streaming traffic flow forecasting framework based on graph neural networks and continual learning. In: Proceedings of the 30th International Joint Conference on Artificial Intelligence. 2021, 3620– 3626
37 Z, Fang Q, Long G, Song K Xie. Spatial-temporal graph ODE networks for traffic flow forecasting. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. 2021, 364– 373
38 H, Wan Y, Lin S, Guo Y Lin. Pre-training time-aware location embeddings from spatial-temporal trajectories. IEEE Transactions on Knowledge and Data Engineering, 2021, DOI:
https://doi.org/10.1109/TKDE.2021.3057875
39 C, Cao M Li. Generating mobility trajectories with retained data utility. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. 2021, 2610– 2620
40 C Y, Chow M F Mokbel . Trajectory privacy in location-based services and data publication. ACM SIGKDD Explorations Newsletter, 2011, 13( 1): 19– 29
41 Y, Kim J, Han C Yuan. TOPTRAC: topical trajectory pattern mining. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2015, 587– 596
42 D W, Choi J, Pei T Heinis . Efficient mining of regional movement patterns in semantic trajectories. Proceedings of the VLDB Endowment, 2017, 10( 13): 2073– 2084
[1] FCS-21623-OF-HN_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed