Unsupervised social network embedding via adaptive specific mappings
Youming GE1, Cong HUANG1, Yubao LIU1,2(), Sen ZHANG1, Weiyang KONG1
1. School of Computer Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China 2. Guangdong Key Laboratory of Big Data Analysis and Processing, Guangzhou 510006, China
In this paper, we address the problem of unsuperised social network embedding, which aims to embed network nodes, including node attributes, into a latent low dimensional space. In recent methods, the fusion mechanism of node attributes and network structure has been proposed for the problem and achieved impressive prediction performance. However, the non-linear property of node attributes and network structure is not efficiently fused in existing methods, which is potentially helpful in learning a better network embedding. To this end, in this paper, we propose a novel model called ASM (Adaptive Specific Mapping) based on encoder-decoder framework. In encoder, we use the kernel mapping to capture the non-linear property of both node attributes and network structure. In particular, we adopt two feature mapping functions, namely an untrainable function for node attributes and a trainable function for network structure. By the mapping functions, we obtain the low dimensional feature vectors for node attributes and network structure, respectively. Then, we design an attention layer to combine the learning of both feature vectors and adaptively learn the node embedding. In encoder, we adopt the component of reconstruction for the training process of learning node attributes and network structure. We conducted a set of experiments on seven real-world social network datasets. The experimental results verify the effectiveness and efficiency of our method in comparison with state-of-the-art baselines.
The feature vector for learning network structures
The feature vector for learning node attributes
The reconstruction of
Tab.1
Fig.1
Dataset
Nodes
Edges
Attributes
Classes
Facebook
755
60,050
480
2
Google
1,247
106,485
1,146
2
Twitter
214
17,930
1,358
2
Citeseer
3,312
4,732
3,703
6
BlogCatalog
5,196
171,743
8,189
6
Flickr
7,575
239,738
12,047
9
Cora
19,793
65,311
7,810
70
Tab.2
Datasets
Metrics
LN
AE
DeepWalk
N2V
UPP-SNE
ANRL
DANE
CFANE
AM-GCN
ASM
Facebook
Macro-F1
10
0.742
0.481
0.407
0.819
0.434
0.725
0.805
0.852
0.886
30
0.844
0.506
0.460
0.820
0.437
0.776
0.834
0.854
0.892
50
0.858
0.543
0.470
0.823
0.439
0.803
0.852
0.863
0.901
Micro-F1
10
0.832
0.623
0.620
0.891
0.755
0.804
0.881
0.902
0.923
30
0.890
0.698
0.775
0.892
0.757
0.839
0.904
0.905
0.931
50
0.903
0.722
0.782
0.894
0.777
0.865
0.909
0.911
0.937
Google
Macro-F1
10
0.775
0.511
0.358
0.625
0.883
0.747
0.786
0.802
0.890
30
0.843
0.536
0.370
0.648
0.886
0.792
0.883
0.809
0.892
50
0.867
0.562
0.389
0.662
0.887
0.813
0.844
0.821
0.894
Micro-F1
10
0.804
0.532
0.537
0.657
0.897
0.831
0.809
0.811
0.902
30
0.855
0.584
0.553
0.627
0.900
0.869
0.849
0.825
0.903
50
0.885
0.606
0.585
0.700
0.901
0.887
0.866
0.829
0.903
Twitter
Macro-F1
10
0.688
0.531
0.367
0.578
0.563
0.543
0.578
0.742
0.793
30
0.722
0.546
0.372
0.655
0.693
0.589
0.602
0.762
0.807
50
0.760
0.561
0.393
0.672
0.705
0.641
0.650
0.776
0.821
Micro-F1
10
0.705
0.544
0.493
0.609
0.622
0.652
0.612
0.751
0.796
30
0.730
0.553
0.503
0.658
0.701
0.671
0.623
0.768
0.805
50
0.765
0.566
0.524
0.674
0.711
0.701
0.659
0.779
0.819
Citeseer
Macro-F1
10
0.594
0.442
0.489
0.552
0.660
0.605
0.663
0.659
0.687
30
0.633
0.505
0.503
0.569
0.679
0.649
0.687
0.682
0.694
50
0.649
0.513
0.511
0.586
0.688
0.660
0.700
0.697
0.705
Micro-F1
10
0.644
0.482
0.537
0.614
0.717
0.673
0.710
0.688
0.734
30
0.680
0.555
0.569
0.631
0.724
0.716
0.725
0.708
0.738
50
0.696
0.575
0.593
0.669
0.739
0.753
0.728
0.716
0.740
BlogCatalog
Macro-F1
10
0.853
0.261
0.662
0.250
0.538
0.762
0.859
0.754
0.904
30
0.868
0.265
0.692
0.297
0.558
0.787
0.873
0.822
0.922
50
0.871
0.271
0.702
0.308
0.564
0.812
0.881
0.852
0.925
Micro-F1
10
0.859
0.263
0.601
0.253
0.633
0.815
0.901
0.763
0.904
30
0.870
0.268
0.638
0.303
0.646
0.870
0.915
0.829
0.923
50
0.876
0.274
0.665
0.315
0.648
0.897
0.922
0.855
0.929
Flickr
Macro-F1
10
0.505
0.201
0.312
0.641
0.703
0.687
0.751
0.713
0.758
30
0.536
0.245
0.355
0.683
0.718
0.692
0.779
0.749
0.783
50
0.572
0.262
0.361
0.705
0.734
0.717
0.793
0.787
0.797
Micro-F1
10
0.522
0.209
0.322
0.651
0.721
0.702
0.764
0.735
0.769
30
0.578
0.251
0.368
0.698
0.740
0.729
0.786
0.766
0.799
50
0.596
0.269
0.374
0.718
0.758
0.745
0.802
0.793
0.804
Cora
Macro-F1
10
0.412
0.256
0.221
0.250
0.421
0.509
0.575
0.533
0.556
30
0.433
0.292
0.277
0.297
0.459
0.524
0.603
0.579
0.587
50
0.462
0.343
0.334
0.308
0.488
0.545
0.619
0.608
0.613
Micro-F1
10
0.422
0.259
0.235
0.253
0.445
0.511
0.572
0.542
0.564
30
0.439
0.298
0.289
0.303
0.472
0.534
0.602
0.588
0.592
50
0.477
0.351
0.340
0.315
0.502
0.563
0.625
0.620
0.615
Tab.3
Model
Facebook
Google
Twitter
Citeseer
BlogCatalog
Flickr
Cora
Autoencoder
0.518
0.733
0.716
0.687
0.294
0.512
0.539
DeepWalk
0.541
0.550
0.529
0.423
0.192
0.298
0.401
Node2vec
0.600
0.543
0.551
0.456
0.368
0.323
0.438
UPP-SNE
0.896
0.639
0.581
0.678
0.228
0.421
0.451
ANRL
0.566
0.637
0.588
0.692
0.593
0.523
0.447
DANE
0.501
0.497
0.611
0.591
0.533
0.504
0.487
CFANE
0.520
0.507
0.647
0.877
0.884
0.773
0.683
AM-GCN
0.818
0.797
0.736
0.865
0.716
0.745
0.712
ASM
0.631
0.817
0.805
0.882
0.549
0.711
0.691
Tab.4
Model
Facebook
Google
Twitter
Citeseer
BlogCatalog
Flickr
Cora
DeepWalk
0.919
0.841
0.789
0.712
0.704
0.524
0.639
Node2vec
0.927
0.878
0.801
0.723
0.710
0.574
0.652
UPP-SNE
0.934
0.891
0.875
0.799
0.762
0.673
0.689
ANRL
0.932
0.857
0.852
0.792
0.784
0.652
0.643
DANE
0.929
0.902
0.869
0.822
0.810
0.642
0.684
CFANE
0.938
0.909
0.884
0.851
0.827
0.715
0.721
AM-GCN
0.940
0.910
0.881
0.859
0.821
0.701
0.726
ASM
0.944
0.915
0.889
0.854
0.823
0.705
0.718
Tab.5
Fig.2
Fig.3
Fig.4
Fig.5
Datasets
ANRL
CFANE
AM-GCN
ASM
Facebook
242
3,325
15
106
Google
304
5,418
20
132
Twitter
221
2,986
13
93
Citeseer
621
7,486
23
330
BlogCatalog
884
9,075
35
391
Flickr
1,345
15,742
62
719
Cora
3,216
6,198
231
1,494
Tab.6
1
X, Wang M, Zhu D, Bo P, Cui C, Shi J Pei . AM-GCN: adaptive multi-channel graph convolutional networks. In: Proceedings of the 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. 2020, 1243−1253
2
Pan G, Yao Y, Tong H, Xu F, Lu J. Unsupervised attributed network embedding via cross fusion. In: Proceedings of the 14th ACM International Conference on Web Search and Data Mining. 2021, 797−805
3
A, Rahimi B Recht . Random features for large-scale kernel machines. In: Proceedings of the 20th International Conference on Neural Information Processing Systems. 2007, 1177−1184
4
Zhang D, Yin J, Zhu X, Zhang C. User profile preserving social network embedding. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence. 2017, 3378−3384
5
T, Mikolov I, Sutskever K, Chen G, Corrado J Dean . Distributed representations of words and phrases and their compositionality. In: Proceedings of the 27th Annual Conference on Neural Information Processing Systems. 2013, 3111−3119
6
J, McAuley J Leskovec . Learning to discover social circles in ego networks. In: Proceedings of the 25th International Conference on Neural Information Processing Systems. 2012, 539−547
7
L, Tang H Liu . Relational learning via latent social dimensions. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2009, 817−826
8
Y, Bengio A, Courville P Vincent . Representation learning: a review and new perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35( 8): 1798–1828
9
B, Perozzi R, Al-Rfou S Skiena . DeepWalk: online learning of social representations. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2014, 701−710
10
A, Grover J Leskovec . node2vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2016, 855−864
11
Zhang Z, Yang H, Bu J, Zhou S, Yu P, Zhang J, Ester M, Wang C. ANRL: attributed network representation learning via deep neural networks. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. 2018, 3155−3161
12
Gao H, Huang H. Deep attributed network embedding. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. 2018, 3364−3370
13
J, Tang M, Qu M, Wang M, Zhang J, Yan Q Mei . LINE: large-scale information network embedding. In: Proceedings of the 24th International Conference on World Wide Web. 2015, 1067−1077
14
D, Wang P, Cui W Zhu . Structural deep network embedding. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2016, 1225−1234
15
Qiu J, Dong Y, Ma H, Li J, Wang K, Tang J. Network embedding as matrix factorization: unifying DeepWalk, LINE, PTE, and node2vec. In: Proceedings of the 11th ACM International Conference on Web Search and Data Mining. 2018, 459−467
16
Z, Zhou Y, Gu G Yu . Adversarial network embedding using structural similarity. Frontiers of Computer Science, 2021, 15( 1): 151603
17
J, Chen Q, Zhang X Huang . Incorporate group information to enhance network embedding. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management. 2016, 1901−1904
18
Q, Long Y, Wang L, Du G, Song Y, Jin W Lin . Hierarchical community structure preserving network embedding: a subspace approach. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management. 2019, 409−418
19
Wang X, Cui P, Wang J, Pei J, Zhu W, Yang S. Community preserving network embedding. In: Proceedings of the 31st AAAI Conference on Artificial Intelligence. 2017, 203−209
20
S, Cao W, Lu Q Xu . GraRep: learning graph representations with global structural information. In: Proceedings of the 24th ACM International Conference on Information and Knowledge Management. 2015, 891−900
21
Chen H, Perozzi B, Hu Y, Skiena S. HARP: hierarchical representation learning for networks. In: Proceedings of the 32nd AAAI Conference on Artificial Intelligence. 2018, 2127−2134
22
L F R, Ribeiro P H P, Saverese D R Figueiredo . struc2vec: learning node representations from structural identity. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2017, 385−394
23
O, Levy Y Goldberg . Neural word embedding as implicit matrix factorization. In: Proceedings of the 27th International Conference on Neural Information Processing Systems. 2014, 2177−2185
24
Yang C, Liu Z, Zhao D, Sun M, Chang E Y. Network representation learning with rich text information. In: Proceedings of the 24th International Conference on Artificial Intelligence. 2015, 2111−2117
25
Huang X, Li J, Hu X. Label informed attributed network embedding. In: Proceedings of the 10th ACM International Conference on Web Search and Data Mining. 2017, 731−739
26
Huang X, Li J, Hu X. Accelerated attributed network embedding. In: Proceedings of 2017 SIAM International Conference on Data Mining. 2017, 633−641
27
Pan S, Wu J, Zhu X, Zhang C, Wang Y. Tri-party deep network representation. In: Proceedings of the 25th International Joint Conference on Artificial Intelligence. 2016, 1895−1901
28
Bandyopadhyay S, Lokesh N, Murty M N. Outlier aware network embedding for attributed networks. In: Proceedings of the 33rd AAAI Conference on Artificial Intelligence. 2019, 12−19
29
Yang H, Pan S, Chen L, Zhou C, Zhang P. Low-bit quantization for attributed network representation learning. In: Proceedings of the 28th International Joint Conference on Artificial Intelligence. 2019, 4047−4053
30
T N, Kipf M Welling . Variational graph auto-encoders. 2016, arXiv preprint arXiv: 1611.07308
31
T N, Kipf M Welling . Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations. 2017
32
P, Velickovic G, Cucurull A, Casanova A, Romero P, Liò Y Bengio . Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations. 2018
33
K, Xu W, Hu J, Leskovec S Jegelka . How powerful are graph neural networks? In: Proceedings of the 7th International Conference on Learning Representations. 2019
34
G, Cui J, Zhou C, Yang Z Liu . Adaptive graph encoder for attributed graph embedding. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2020, 976−985
35
Yang D, Wang S, Li C, Zhang X, Li Z. From properties to links: deep network embedding on incomplete graphs. In: Proceedings of 2017 ACM on Conference on Information and Knowledge Management. 2017, 367−376
36
Cao S, Lu W, Xu Q. Deep neural networks for learning graph representations. In: Proceedings of the 30th AAAI Conference on Artificial Intelligence. 2016, 1145−1152
37
G, Zhang Y, Liu X Jin . A survey of autoencoder-based recommender systems. Frontiers of Computer Science, 2020, 14( 2): 430–450
38
Li C, Wang S, Yang D, Li Z, Yang Y, Zhang X, Zhou J. PPNE: property preserving network embedding. In: Proceedings of the 22nd International Conference on Database Systems for Advanced Applications. 2017, 163−179
39
Z, Meng S, Liang J, Fang T Xiao . Semi-supervisedly co-embedding attributed networks. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems. 2019, 584
40
Jian S, Hu L, Cao L, Lu K, Gao H. Evolutionarily learning multi-aspect interactions and influences from network structure and node content. In: Proceedings of the 33rd AAAI Conference on Artificial Intelligence. 2019, 598−605
41
Cen Y, Zou X, Zhang J, Yang H, Zhou J, Tang J. Representation learning for attributed multiplex heterogeneous network. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2019, 1358−1368
42
Meng Z, Liang S, Fang J, Xiao T. Semi-supervisedly co-embedding attributed networks. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems. 2019, 584
43
L, Qiao F, Zhang X, Huang K, Li E Chen . Heterogeneous-attributes enhancement deep framework for network embedding. Frontiers of Computer Science, 2021, 15( 6): 156616