Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

邮发代号 80-970

2019 Impact Factor: 1.275

Frontiers of Computer Science  2024, Vol. 18 Issue (3): 183909   https://doi.org/10.1007/s11704-024-31014-9
  本期目录
SCREEN: predicting single-cell gene expression perturbation responses via optimal transport
Haixin WANG1, Yunhan WANG2, Qun JIANG3, Yan ZHANG1(), Shengquan CHEN4()
1. Cadre Medical Department, The 1st Clinical Center, Chinese PLA General Hospital, Beijing 100853, China
2. School of Statistics, Renmin University of China, Beijing 100872, China
3. Ministry of Education Key Laboratory of Bioinformatics, Bioinformatics Division of BNRIST, Department of Automation, Tsinghua University, Beijing 100084, China
4. School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, China
 全文: PDF(3748 KB)   HTML
收稿日期: 2023-12-12      出版日期: 2024-03-18
Corresponding Author(s): Yan ZHANG,Shengquan CHEN   
 引用本文:   
. [J]. Frontiers of Computer Science, 2024, 18(3): 183909.
Haixin WANG, Yunhan WANG, Qun JIANG, Yan ZHANG, Shengquan CHEN. SCREEN: predicting single-cell gene expression perturbation responses via optimal transport. Front. Comput. Sci., 2024, 18(3): 183909.
 链接本文:  
https://academic.hep.com.cn/fcs/CN/10.1007/s11704-024-31014-9
https://academic.hep.com.cn/fcs/CN/Y2024/V18/I3/183909
Fig.1  
1 M, Lotfollahi F A, Wolf F J Theis . scGen predicts single-cell perturbation responses. Nature Methods, 2019, 16( 8): 715–721
2 Y, Ji M, Lotfollahi F A, Wolf F J Theis . Machine learning for perturbational single-cell omics. Cell Systems, 2021, 12( 6): 522–537
3 X, Wei J, Dong F Wang . scPreGAN, a deep generative model for predicting the response of single-cell expression to perturbation. Bioinformatics, 2022, 38( 13): 3377–3384
4 K, He X, Chen S, Xie Y, Li P, Dollár R Girshick . Masked autoencoders are scalable vision learners. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022, 15979–15988
5 A V, Makkuva A, Taghvaei J D, Lee S Oh . Optimal transport mapping via input convex neural networks. In: Proceedings of the 37th International Conference on Machine Learning. 2020, 619
6 H M, Kang M, Subramaniam S, Targ M, Nguyen L, Maliskova E, McCarthy E, Wan S, Wong L, Byrnes C M, Lanata R E, Gate S, Mostafavi A, Marson N, Zaitlen L A, Criswell C J Ye . Multiplexed droplet single-cell RNA-sequencing using natural genetic variation. Nature Biotechnology, 2018, 36( 1): 89–94
7 A L, Haber M, Biton N, Rogel R H, Herbst K, Shekhar C, Smillie G, Burgin T M, Delorey M R, Howitt Y, Katz I, Tirosh S, Beyaz D, Dionne M, Zhang R, Raychowdhury W S, Garrett O, Rozenblatt-Rosen H N, Shi O, Yilmaz R J, Xavier A Regev . A single-cell survey of the small intestinal epithelium. Nature, 2017, 551( 7680): 333–339
8 T D, Green S, Peidli C, Shen T, Gross J, Min S, Garda J P, Taylor-King D S, Marks A, Luna N, Blüthgen C Sander . scPerturb: information resource for harmonized single-cell perturbation data. In: Proceedings of the 6th Conference on Neural Information Processing Systems. 2022
9 S, Chen R, Wang W, Long R Jiang . ASTER: accurately estimating the number of cell types in single-cell chromatin accessibility data. Bioinformatics, 2023, 39( 1): btac842
10 J, Wang H, Tao H, Li X, Bo H Chen . 3D genomic organization in cancers. Quantitative Biology, 2023, 11( 2): 109–121
11 Z, Gao X, Chen Z, Li X, Cui Q, Jiang K, Li S, Chen R Jiang . scEpiTools: a database to comprehensively interrogate analytic tools for single-cell epigenomic data. Journal of Genetics and Genomics, 2023, doi: 10.1016/j.jgg.2023.09.011
12 S, Chen K, Hua H, Cui R Jiang . VPAC: variational projection for accurate clustering of single-cell transcriptomic data. BMC Bioinformatics, 2019, 20: 139-151
[1] Highlights Download
[2] Supplementary materials Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed