Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front. Comput. Sci.    0, Vol. Issue () : 295-305    https://doi.org/10.1007/s11704-008-0029-4
Median Fisher Discriminator: a robust feature extraction method with applications to biometrics
YANG Jian1, YANG Jingyu1, ZHANG David2
1.School of Computer Science and Technology, Nanjing University of Science and Technology; 2.Biometric Research Centre, Department of Computing, Hong Kong Polytechnic University
 Download: PDF(419 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract In existing Linear Discriminant Analysis (LDA) models, the class population mean is always estimated by the class sample average. In small sample size problems, such as face and palm recognition, however, the class sample average does not suffice to provide an accurate estimate of the class population mean based on a few of the given samples, particularly when there are outliers in the training set. To overcome this weakness, the class median vector is used to estimate the class population mean in LDA modeling. The class median vector has two advantages over the class sample average: (1) the class median (image) vector preserves useful details in the sample images, and (2) the class median vector is robust to outliers that exist in the training sample set. In addition, a weighting mechanism is adopted to refine the characterization of the within-class scatter so as to further improve the robustness of the proposed model. The proposed Median Fisher Discriminator (MFD) method was evaluated using the Yale and the AR face image databases and the PolyU(Polytechnic University) palmprint database. The experimental results demonstrated the robustness and effectiveness of the proposed method.
Issue Date: 05 September 2008
 Cite this article:   
YANG Jingyu,YANG Jian,ZHANG David. Median Fisher Discriminator: a robust feature extraction method with applications to biometrics[J]. Front. Comput. Sci., 0, (): 295-305.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-008-0029-4
https://academic.hep.com.cn/fcs/EN/Y0/V/I/295
1 Webb A . StatisticalPattern Recognition. London: Hodder Arnold, 1999
2 Turk M, Pentland A . Eigenfaces for recognition. Journal of Cognitive Neuroscience, 1991, 3(1): 71–86.
doi:10.1162/jocn.1991.3.1.71
3 Lu G, Zhang D, Wang K . Palmprint recognition using eigenpalms features. Pattern Recognition Letters, 2003, 24(9–10): 1463–1467.
doi:10.1016/S0167‐8655(02)00386‐0
4 Liu K, Cheng Y -Q, Yang J -Y, et al.. An efficient algorithm for Foley-Sammon optimalset of discriminant vectors by algebraic method. International Journal of Pattern Recognition and Artificial Intelligence, 1992, 6(5): 817–829.
doi:10.1142/S0218001492000412
5 Swets D L, Weng J . Using discriminant eigenfeaturesfor image retrieval. IEEE Transactionson Pattern Analysis and Machine Intelligence, 1996, 18(8): 831–836.
doi:10.1109/34.531802
6 Belhumeur P N, Hespanha J P, Kriengman D J . Eigenfaces vs. fisherfaces: recognition using class specificlinear projection. IEEE Transactions onPattern Analysis and Machine Intelligence, 1997, 19(7): 711–720.
doi:10.1109/34.598228
7 Chen L F, Liao H -Y M, Lin J C, et al.. A new LDA-based face recognition system whichcan solve the small sample size problem. Pattern Recognition, 2000, 33(10): 1713–1726.
doi:10.1016/S0031‐3203(99)00139‐9
8 Jin Z, Yang J Y, Hu Z S, et al.. Face recognition based on uncorrelated discriminanttransformation. Pattern Recognition, 2001, 34(7): 1405–1416.
doi:10.1016/S0031‐3203(00)00084‐4
9 Yu H, Yang J . A direct LDA algorithm forhigh-dimensional data-with application to face recognition. Pattern Recognition, 2001, 34(10): 2067–2070.
doi:10.1016/S0031‐3203(00)00162‐X
10 Yang J, Yang J Y, Why can LDA be performedin PCA transformed space? Pattern Recognition, 2003, 36(2): 563–566.
doi:10.1016/S0031‐3203(02)00048‐1
11 Liu C J, Wechsler H . Robust coding schemes forindexing and retrieval from large face databases. IEEE Transactions on Image Processing, 2000, 9(1): 132–137.
doi:10.1109/83.817604
12 Kim T -K, Kittler J . Locally linear discriminantanalysis technique for multi-modally distributed classes for facerecognition with a single model image. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(3): 318–327.
doi:10.1109/TPAMI.2005.58
13 Wu X, Zhang D, Wang K . Fisherpalms based palmprint recognition. Pattern Recognition Letters, 2003, 24(15): 2829–2838.
doi:10.1016/S0167‐8655(03)00141‐7
14 Yang M H . Kernel eigenfaces vs. kernel fisherfaces: face recognition usingkernel methods. In: : Proceed-ings of theFifth IEEE International Conference on Automatic Face and GestureRecognition. Washington D. C., 2002 : 215–220
15 Lu J, Plataniotis K N, Venetsanopoulos A N . Face recognition using kernel directdiscriminant analysis algorithms. IEEETransactions on Neural Networks, 2003, 14(1): 117–126.
doi:10.1109/TNN.2002.806629
16 Yang J, Frangi A, Yang J Y, et al.. KPCA plus LDA: a complete kernel Fisher discriminantframework for feature extraction and recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(2): 230–244.
doi:10.1109/TPAMI.2005.33
17 Loog M, Duin R P W, Haeb-Umbach R . Multiclass linear dimension reduction by weighted pairwiseFisher criteria. IEEE Transactions on PatternAnalysis and Machine Intelligence, 2001, 23(7): 762–766.
doi:10.1109/34.935849
18 Koren Y, Carmel L . Robust linear dimensionalityreduction, IEEE Transactions on Visualizationand Computer Graphics, 2004, 10(4): 459–470.
doi:10.1109/TVCG.2004.17
19 He X, Yan S, Hu Y, et al.. Face recognition using Laplacianfaces. IEEE Transactions on Pattern Analysis and MachineIntelligence, 2005, 27(3): 328–340.
doi:10.1109/TPAMI.2005.55
20 Kwak K-C, Pedrycz W . Face recognition using afuzzy fisherface classifier. Pattern Recognition, 2005, 38(10): 1717–1732.
doi:10.1016/j.patcog.2005.01.018
21 Fidler S, Skocaj D, Leonardis A . Combining reconstructive and discriminative subspacemethods for robust classification and regression by subsampling. IEEE Transactions on Pattern Analysis and MachineIntelligence, 2005, 27(3): 328–340.
doi:10.1109/TPAMI.2005.55
22 Chen S C, Liu J, Zhou Z -H, Making FLDA applicable to face recognition with one sampleper person. Pattern Recognition, 2004, 37(7): 1553–1555.
doi:10.1016/j.patcog.2003.12.010
23 Huang J, Yuen P C, Chen W S, et al.. Component-based LDA method for face recognitionwith one training sample. AMFG (Analysisand Modeling of Faces and Gestures), 2003, 120–126
24 Hawkins D M, McLachlan G J . High-Breakdown linear discriminantanalysis. Journal of the American StatisticalAssociation, 1997, 92: 136–143.
doi:10.2307/2291457
25 He X, Fung W K . High breakdown estimationfor multiple populations with applications to discriminant analysis. Journal of Multivariate Analysis, 2000, 72(2): 151–162.
doi:10.1006/jmva.1999.1857
26 Hubert M, Driessen K V . Fast and robust discriminantanalysis. Computational Statistics and Data Analysis, 2003, 45: 301–320.
doi:10.1016/S0167‐9473(02)00299‐2
27 Croux C, Dehon C . Robust linear discriminantanalysis using S-estimators. Canadian Journalof Statistics, 2001, 29: 473–493.
doi:10.2307/3316042
28 Croux C, Dehon C, Rousseeuw P J, et al.. Robust estimation of the conditional medianfunction at elliptical models. Statistics &Probability Letters, 2001, 51: 361–368.
doi:10.1016/S0167‐7152(00)00176‐0
29 Rousseeuw P S, Driessen K V . A fast algorithm for theminimum covariance determinant estimator. Technometrics, 1999 (41): 212–223
30 Grimmett G R, Stirzaker D R . Probability and Random Processes. 2nd ed . Oxford: Clarendon Press, 1992
31 Wikipedia. . Thefree encyclopedia. http://en.wikipedia.org/wiki/Median
32 Marion A . AnIntroduction to Image Processing. London:Chapman and Hall, 1991
33 Yale face database. http://cvc.yale.edu/projects/yalefaces/yalefaces.html
34 Martinez A M, Benavente R . The AR face database. http://rvl1.ecn.purdue.edu/˜aleix/aleix_face_DB.html
35 Martinez A M, Benavente R . The AR face database. Computer Vision Center Technical Report #24, 1998
36 Zhang D D . Palmprint Authentication. Berlin: Springer, 2004
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed