Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front. Comput. Sci.    2009, Vol. 3 Issue (4) : 524-534    https://doi.org/10.1007/s11704-009-0039-x
Research articles
Approximation algorithm for constructing data aggregation trees for wireless sensor networks
Deying LI1,Qinghua ZHU1,Jiannong CAO2,
1.Key Laboratory of Data Engineering and Knowledge Engineering, School of Information, Renmin University of China, Beijing 100872, China; 2.Internet and Mobile Computing Lab, Department of Computing, Hong Kong Polytechnic University, Hong Kong, China;
 Download: PDF(878 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract This paper considers the problem of constructing data aggregation trees in wireless sensor networks (WSNs) for a group of sensor nodes to send collected information to a single sink node. The data aggregation tree contains the sink node, all the source nodes, and some other non-source nodes. Our goal of constructing such a data aggregation tree is to minimize the number of non-source nodes to be included in the tree so as to save energies. We prove that the data aggregation tree problem is NP-hard and then propose an approximation algorithm with a performance ratio of four and a greedy algorithm. We also give a distributed version of the approximation algorithm. Extensive simulations are performed to study the performance of the proposed algorithms. The results show that the proposed algorithms can find a tree of a good approximation to the optimal tree and has a high degree of scalability.
Keywords WSNs      data aggregation tree      approximation algorithm      distributed algorithm      
Issue Date: 05 December 2009
 Cite this article:   
Deying LI,Jiannong CAO,Qinghua ZHU. Approximation algorithm for constructing data aggregation trees for wireless sensor networks[J]. Front. Comput. Sci., 2009, 3(4): 524-534.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-009-0039-x
https://academic.hep.com.cn/fcs/EN/Y2009/V3/I4/524
Culler D, Estrin D, Srivastava M. Overview of sensor networks. Computer, 2004, 37(8): 41―49

doi: 10.1109/MC.2004.93
Chong C-Y, Kumar S P. Sensor networks: evolution,opportunities, and challenges. In: Proceedingsof the IEEE, 2003, 91(8): 1247―1256

doi: 10.1109/JPROC.2003.814918
Goel A, Estrin D. Simultaneous optimiationfor concave costs: single sink aggregation or single source buy-at-bulk. In: Proceedings of the 14th ACM-SIAM Symposiumon Discrete Algorithms. 2003, 499―505
Karl H, Lobbers M, Neberg T. A data aggregation framework for wireless sensor networks. Technical report TKN-03-016, TelecommunicationNetwork Group, Technical University Berlin, Sept. 2003
Intanagonwiwat C, Govindan R, Estrin D. Directed diffusion: a scalable and robust communicationparadigm for sensor networks. In: Proceedingsof the 6th Annual ACM/IEEE International Conference on Mobile Computingand Networking (MOBICOM’00). Boston, MA, 2000, 56―67
Yu Y, Krishnamachari B, Prasanna V K. Energy-latency tradeoffs for data gathering in wirelesssensor networks. In: Proceedings of the23rd Conference of IEEE Communication Society (INFOCOM’04). Hong Kong, 2004, 255―266
Schurgers C, Aberhorne O, Srivastava M B. Modulation scaling for energy-aware communication systems. In: Proceedings of International Symposium on LowPower Electronics and Design (ISLPED’01). Huntington Beach, CA, 2001, 96―99
Prabhakar B, Uysal-Biyikoglu E, Gamal A E. Energy-efficient transmission over awireless link via lazy packet scheduling. In: Proceedings of the 20th Conference of IEEE Communication Society(INFOCOM’ 01). 2001, 386―394
Intanagonwiwat C, Estrin D, Govindan R, et al. Impact of network density on data aggregationin wireless sensor networks, In: Proceedingsof the 22nd International Conference on Distributed Computing Systems(ICDCS’02). Austria, 2002, 457―458
Kalpakis K, Dasgupta K, Namjoshi P. Efficient algorithms for maximum lifetime data gatheringand aggregation in wireless sensor networks. The International Journal of Computer and Telecommunications Networking, 2003, 42(6): 697―716
Wu Y, Fahmy S, Shroff N. On the construction of a maximum-lifetime data gatheringtree in sensor networks: NP-completeness and approximation algorithm. In: Proceedings of the 26rd Conference of IEEECommunication Society (INFOCOM’08). 2008, 356―360
Ding M, Cheng X, Xue G. Aggregation tree construction in sensor networks. In: Proceedings of IEEE VTC’03. 2003, 2168―2172
Du H, Hu H, Jia X, Energy efficient routing and scheduling for real timedata aggregation in wireless sensor networks. Computer Communications, 2006, 29(17): 3527―3535

doi: 10.1016/j.comcom.2006.01.032
Luo H, Liu Y, Das K. Routing correlated data with fusion cost in wirelesssensor networks. IEEE Trans. on MobileComputing, 2006, 5(11): 1620―1632

doi: 10.1109/TMC.2006.171
Li D, Liu Q, Jia X, et al. Energy efficient multicast routing in ad hocnetworks. Computer Commuinations, 2007, 30: 3746―3756

doi: 10.1016/j.comcom.2007.09.003
Chen X, Hu X, Zhu J. Minimum data aggregation time problem in wireless sensornetworks. In: Proceedings of 1st int’lConferenve on Mobile Ad-hoc and Sensor Networks-MSN05. 2005, 133―142
Huang S, Wan P-J, Vu C T, et al. Nearly constant approximation for data aggregationscheduling in wireless sensor networks. In: Proceedings of the 26rd Conference of IEEE Communication Society(INFOCOM’ 07). 2007, 366―372
Li D, Cao J, Liu M, et al. Construction of optimal data aggregation treesfor wireless sensor networks. In: Proceedingsof ICCCN06. 2006, 475―480
Garey M, Johnson D. The rectilinear steiner treeis NP-complete. SIAM Journal on AppliedMathematics, 1997, 32(4): 826―834

doi: 10.1137/0132071
Chen D, Du D, Hu X, et al. Approximateins for steiner trees with minimumnumber of steiner points. Theoretical ComputerScience, 2001, 262: 83―99

doi: 10.1016/S0304-3975(00)00182-1
Mandoiu I, Zelikovsky A. A note on the MST heuristicfor bounded edge-length steiner trees with minimum number of steinerpoints. Information Processing Letters, 2000, 75(4): 165―167

doi: 10.1016/S0020-0190(00)00095-8
Awerbuch B. Optimaldistributed algorithms for minimum-weight spanning tree, counting,leader election and related problems. In: Proceedings of 19th ACM Symp. on Theory of Computing, ACM, New York. 1987, 230―240
[1] Yudong QIN, Deke GUO, Zhiyao HU, Bangbang REN. Uncertain multicast under dynamic behaviors[J]. Front. Comput. Sci., 2020, 14(1): 130-145.
[2] Xingshen SONG, Yuexiang YANG, Yu JIANG, Kun JIANG. Optimizing partitioning strategies for faster inverted index compression[J]. Front. Comput. Sci., 2019, 13(2): 343-356.
[3] Peng ZHANG. Unbalanced graph cuts with minimum capacity[J]. Front. Comput. Sci., 2014, 8(4): 676-683.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed