Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front. Comput. Sci.    2010, Vol. 4 Issue (1) : 135-142    https://doi.org/10.1007/s11704-009-0068-5
Research articles
An effective scheduling scheme for multi-hop multicast in wireless mesh networks
Zheng LIU,Heng DAI,Farouk ALKADHI,Jufeng DAI,
School of Electronic Information Engineering, Tianjin University, Tianjin 300072, China;
 Download: PDF(309 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract With the utilization of concurrent transmission strategy, a throughput-enhanced scheduling scheme is devised for multicast service in wireless multi-hop mesh networks. Since the performance of a multicast mechanism is constrained in a wireless setting due to the interference among local wireless transmissions, the interference relationships are first characterized by introducing a graph transformation method. Based on the graph transformation, the multicast scheduling problem is converted to the graph coloring problem, and then a capacity greedy algorithm is designed to provide concurrent transmission scheduling so that the demanded multicast transmission rate can be achieved. Moreover, the necessary and sufficient conditions of multicast schedulable feasibility are derived. Through corresponding simulations, it is shown that the proposed strategy can enhance the throughput of wireless multi-hop multicast systems significantly.
Keywords multicast      wireless mesh networks      scheduling      interference      capacity      
Issue Date: 05 March 2010
 Cite this article:   
Zheng LIU,Farouk ALKADHI,Heng DAI, et al. An effective scheduling scheme for multi-hop multicast in wireless mesh networks[J]. Front. Comput. Sci., 2010, 4(1): 135-142.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-009-0068-5
https://academic.hep.com.cn/fcs/EN/Y2010/V4/I1/135
Yang Y, Papagiannaki K, Ci S, et al. Wireless mesh networks: applications, architecturesand protocols. IEEE Network Magazine, January/Febuary 2008, 22(1): 4–5

doi: 10.1109/MNET.2008.4435896
Akyildiz I, Wang X, Wang W. Wireless mesh networks : a Survey. Computer Networks Journal (Elsevier), January 2005, 47: 445–487

doi: 10.1016/j.comnet.2004.12.001
Paul S. Multicaston the Internet and its applications. Kluwer, 1998
Jia W. Implementationof a reliable multicast protocol. Journalof Software: Practice and Experience, 1997, 27(7): 813–850

doi: 10.1002/(SICI)1097-024X(199707)27:7<813::AID-SPE107>3.0.CO;2-E
Jia W, Zhao W, Xuan D, et al. An efficient fault-tolerant multicast routingprotocol with core-based tree techniques. IEEE Transactions on Parallel and Distributed Systems, 1999, 10(10): 984–1000

doi: 10.1109/71.808133
Viswanathan H, Mukherjee S. Throughput-range tradeoffof wireless mesh backhaul networks. IEEEJournal on Selected Areas in Communications, March 2006, 24(3): 593–602

doi: 10.1109/JSAC.2005.862408
Liu Z, Yang M, Dai J. Throughput range based on concurrent transmission inwireless mesh networks. In: Proceedingsof IEEE International Conference on Wireless Communications, Networkingand Mobile Computing (WiCOM2007), September 2007, 1449–1452
Nguyen U, Xu J. Multicast routing in wirelessmesh networks: minimum cost trees or shortest path trees?. IEEE Communication Magazine, November 2007, 45(11): 72–77

doi: 10.1109/MCOM.2007.4378324
Ruiz P M, Gomez-Skarmeta AF. Approximatingoptimal multicast trees in wireless multihop networks. In: Proceedings of the 10th IEEE Symposium on Computer and Communication, June 2005, 686–691
Roy S, Koutsonikolas D, Das S, et al. High throughput multicast routing metrics inwireless mesh networks. In: Proceedingsof International Conference on Interactive Digital Storytelling, 2006
Yin Z, Li Z, Chen M. A novel channel assignment algorithm for multicast inmulti-radio wireless mesh networks. In:Proceedings of IEEE Symposium on Computers and Communications (ISCC2007), July 2007, 283–288
Yuan J, Li Z, Yu W, et al. A cross-layer optimization framework for multihopmulticast in wireless mesh network. IEEEJournal on Selected Areas in Communications, 2006, 24(11): 2092–2102

doi: 10.1109/JSAC.2006.881617
Koutsonikolas D, Das S, Hu Y, An interference-aware fair scheduling for multicast inwireless mesh networks. Journal of Paralleland Distributed Computing, 2008, 68: 372–386

doi: 10.1016/j.jpdc.2007.05.007
Meng X R, Tan K, Zhang Q. Joint routing and channel assignment in multi-radio wirelessmesh networks. In: Proceedings of IEEEInternational Conference on Communications (ICC 2006), 2006, 3596–3601
West D B, Introduction to graph theory, PrenticeHall, 2001
Raman B and Chebrolu K. Design and evaluation ofa new MAC protocol for long-distance 802.11 mesh networks. In: Proceedings of the 11th Annual InternationalConference on Mobile Computing and Networking ( ACM Mobicom 2005), 2005, 156–169
Brelaz D. Newmethods to color the vertices of a graph. Communications of the ACM, 1979, 22 (4): 251–256

doi: 10.1145/359094.359101
IEEE Standard 802.16―2004. IEEE Standard for local and metropolitan area networks-Part16: Air Interface for Fixed Broadband Wireless Access Systems, October 2004
Kodialam M, Nandagopal T. The effect of interferenceon the capacity of multi-hop wireless networks. Bell Labs Technical Report, Lucent Technologies, July 2003
[1] Han Yao HUANG, Kyung Tae KIM, Hee Yong YOUN. Determining node duty cycle using Q-learning and linear regression for WSN[J]. Front. Comput. Sci., 2021, 15(1): 151101-.
[2] Zeinab ASKARI, Avid AVOKH. EMSC: a joint multicast routing, scheduling, and call admission control in multi–radio multi–channel WMNs[J]. Front. Comput. Sci., 2020, 14(5): 145503-.
[3] Yudong QIN, Deke GUO, Zhiyao HU, Bangbang REN. Uncertain multicast under dynamic behaviors[J]. Front. Comput. Sci., 2020, 14(1): 130-145.
[4] Libing WU, Lei NIE, Samee U. KHAN, Osman KHALID, Dan WU. A V2I communication-based pipeline model for adaptive urban traffic light scheduling[J]. Front. Comput. Sci., 2019, 13(5): 929-942.
[5] Lin WANG, Depei QIAN, Rui WANG, Zhongzhi LUAN, Hailong YANG, Huaxiang ZHANG. A novel index system describing program runtime characteristics for workload consolidation[J]. Front. Comput. Sci., 2019, 13(3): 489-499.
[6] Siyuan TANG, Bei HUA. Increasing multicast transmission rate with localized multipath in software-defined networks[J]. Front. Comput. Sci., 2019, 13(2): 413-425.
[7] Yihong GAO, Huadong MA. StreamTune: dynamic resource scheduling approach for workload skew in video data center[J]. Front. Comput. Sci., 2018, 12(4): 669-681.
[8] Yansheng DU, Zhihua CHEN, Changqing ZHANG, Xiaochun CAO. Research on axial bearing capacity of rectangular concrete-filled steel tubular columns based on artificial neural networks[J]. Front. Comput. Sci., 2017, 11(5): 863-873.
[9] Mei BAI,Junchang XIN,Guoren WANG,Roger ZIMMERMANN,Xite WANG. Skyline-join query processing in distributed databases[J]. Front. Comput. Sci., 2016, 10(2): 330-352.
[10] Qi WANG,Donghui WANG,Chaohuan HOU. Exploiting write power asymmetry to improve phase change memory system performance[J]. Front. Comput. Sci., 2015, 9(4): 566-575.
[11] Xite WANG,Derong SHEN,Mei BAI,Tiezheng NIE,Yue KOU,Ge YU. SAMES: deadline-constraint scheduling in MapReduce[J]. Front. Comput. Sci., 2015, 9(1): 128-141.
[12] Fei HE,Xiaoyu SONG,Ming GU,Jiaguang SUN. Generalized interface automata with multicast synchronization[J]. Front. Comput. Sci., 2015, 9(1): 1-14.
[13] JongHyuk LEE,SungJin CHOI,JoonMin GIL,Taeweon SUH,HeonChang YU. A scheduling algorithm with dynamic properties in mobile grid[J]. Front. Comput. Sci., 2014, 8(5): 847-857.
[14] Najme MANSOURI. Network and data location aware approach for simultaneous job scheduling and data replication in large-scale data grid environments[J]. Front. Comput. Sci., 2014, 8(3): 391-408.
[15] Kok-Lim Alvin YAU, Kae Hsiang KWONG, Chong SHEN. Reinforcement learning models for scheduling in wireless networks[J]. Front Comput Sci, 2013, 7(5): 754-766.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed