Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front. Comput. Sci.    2010, Vol. 4 Issue (4) : 560-570    https://doi.org/10.1007/s11704-010-0104-5
Research articles
An enhanced swarm intelligence clustering-based RBFNN classifier and its application in deep Web sources classification
Yong FENG,Zhongfu WU,Jiang ZHONG,Chunxiao YE,Kaigui WU,
College of Computer Science, Chongqing University, Chongqing 400030, China;
 Download: PDF(480 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The central problem in training a radial basis function neural network (RBFNN) is the selection of hidden layer neurons, which includes the selection of the center and width of those neurons. In this paper, we propose an enhanced swarm intelligence clustering (ESIC) method to select hidden layer neurons, and then, train a cosine RBFNN based on the gradient descent learning process. Also, we apply this new method for classification of deep Web sources. Experimental results show that the average Precision, Recall and F of our ESIC-based RBFNN classifier achieve higher performance than BP, Support Vector Machines (SVM) and OLS RBF for our deep Web sources classification problems.
Keywords swarm intelligence      Clustering      radial basis function neural network (RBFNN)      deep Web sources classification      classifier      
Issue Date: 05 December 2010
 Cite this article:   
Yong FENG,Jiang ZHONG,Zhongfu WU, et al. An enhanced swarm intelligence clustering-based RBFNN classifier and its application in deep Web sources classification[J]. Front. Comput. Sci., 2010, 4(4): 560-570.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-010-0104-5
https://academic.hep.com.cn/fcs/EN/Y2010/V4/I4/560
Chen S, Cowan C N, Grant P M. Orthogonal least squares learning algorithm for radialbasis function networks. IEEE Transactionson Neural Networks, 1991, 2(2): 302―309

doi: 10.1109/72.80341
Mao K Z, Huang G B. Neuron selection for RBFneural network classifier based on data structure preserving criterion. IEEE Transactions on Neural Networks, 2005, 16(6): 1531―1540

doi: 10.1109/TNN.2005.853575
Huang G B, Saratchandran P, Sundararajan N. A generalized growing and pruning RBF (GGAP-RBF) neuralnetwork for function approximation. IEEETransactions on Neural Networks, 2005, 16(1): 57―67

doi: 10.1109/TNN.2004.836241
Lee S J, Hou C L. An ART-based constructionof RBF networks. IEEE Transactions on NeuralNetworks, 2002, 13(6): 1308―1321

doi: 10.1109/TNN.2002.804308
Lee H M, Chen C M, Lu Y F. A self-organizing HCMAC neural-network classifier. IEEE Transactions on Neural Networks, 2003, 14(1): 15―27

doi: 10.1109/TNN.2002.806607
Gonzalez J, Rojas I, Ortega J, Pomares H, Fernandez F J, Diaz A F. Multiobjective evolutionary optimization of the size,shape, and position parameters of radial basis function networks forfunction approximation. IEEE Transactionson Neural Networks, 2003, 14(6): 1478―1495

doi: 10.1109/TNN.2003.820657
Karayiannis N B. Reformulated radial basis neural networks trained by gradient descent. IEEE Transactions on Neural Networks, 1999, 10(3): 657―671

doi: 10.1109/72.761725
Randolph-Gips M M, Karayiannis N B. Cosine radial basis functionneural networks. In: Proceedings of theInternational Joint Conference on Neural Networks. New York: IEEE Press, 2003, 96―101
Deneuhourg J L, Goss S, Franks N. The dynamics of collective sorting: robot-like ant andant-like robot. In: Proceedings of the1st international conference on simulation of adaptive behavior onfrom animals to animats. Cambridge: MIT Press, 1991, 356―365
Lumer E, Faieta B. Diversity and adaptationin populations of clustering ants. In: Proceedings of the third international conference on Simulation ofadaptive behavior: from animals to animats 3: from animals to animats3. Cambridge: MIT Press, 1994, 499―508
Bonabeau E. DorigoM Swarm intelligence: from natural to artificial systems: Oxford UniversityPress, 1999
Wu B, Shi Z Z. A clustering algorithm basedon swarm intelligence. In: Proceeding ofInternational Conferences on Info-tech & Info-net. New York: IEEE Press, 2001, 58―66
Ramos V, Pina P, Muge F. Self-organized data and image retrieval as a consequenceof inter-dynamic synergistic relationships in artificial ant colonies. In: Frontiers in Artificial Intelligence and Applications,Soft Computing Systems-Design, Management and Applications. Amsterdam: IOS Press, 2002, 500―509
Ramos V, Merelo J J. Self-organized stigmergicdocument maps: environment as a mechanism for context learning. In: Proceeding of 1st Spanish Conference on Evolutionaryand Bio-Inspired Algorithms. Spain: Merida University Press, 2002, 284―293
Han Y F, Shi P F. An improved ant colony algorithmfor fuzzy clustering in image segmentation. Neurocomputing, 2007, 70(4―6): 665―671
Runkler T A. Ant colony optimization of clustering models. International Journal of Intelligent Systems, 2005, 20(12): 1233―1251

doi: 10.1002/int.20111
Kuo R J, Wang H S, Hu T L, Chou S H. Applicationof ant k-means on clustering analysis. Computers & Mathematics with Applications (Oxford, England), 2005, 50(10―12): 1709―1724

doi: 10.1016/j.camwa.2005.05.009
Chen A P, Chen C C. A new efficient approachfor data clustering in electronic library using ant colony clusteringalgorithm. Electronic Library, 2006, 24(4): 548―559

doi: 10.1108/02640470610689223
Feng Y, Zhong J, Xiong Z Y, Ye C X, Wu K G. Network anomaly detection based on DSOMand ACO clustering. Lecture Notes in Computer Science.Advances in Neural Networks – ISNN 2007. LNCS, 2007, 4492(Part 2): 947―955
He B, Patel M, Zhang Z, Chang K C C. Accessingthe deep Web. Communications of the ACM, 2007, 50(5): 94―101

doi: 10.1145/1230819.1241670
Ghanem T M, Aref W G. Databases deepen the Web. Computer, 2004, 37(1): 116―117

doi: 10.1109/MC.2004.1260731
Liu W, Meng X F, Meng W Y. A survey of deep Web data integration. Chinese Journal of Computers, 2007, 30(9): 1475―1489 (in Chinese)
Wang Y, Zuo W L, Peng T, He F L. Domain-specificdeep Web sources discovery. In: Proceedingof Fourth International Conference on Natural Computation, New York: IEEE Press, 2008, 202―206

doi: 10.1109/ICNC.2008.350
, 2003metaquerier.cs.uiuc.edu/repository, 2003
He B, Chang K C C. Automatic complex schemamatching across Web query interfaces: a correlation mining approach. ACM Transactions on Database Systems, 2006, 31(1): 346―395

doi: 10.1145/1132863.1132872
[1] Panthadeep BHATTACHARJEE, Pinaki MITRA. A survey of density based clustering algorithms[J]. Front. Comput. Sci., 2021, 15(1): 151308-.
[2] Zhihan JIANG, Yan LIU, Xiaoliang FAN, Cheng WANG, Jonathan LI, Longbiao CHEN. Understanding urban structures and crowd dynamics leveraging large-scale vehicle mobility data[J]. Front. Comput. Sci., 2020, 14(5): 145310-.
[3] Xibin DONG, Zhiwen YU, Wenming CAO, Yifan SHI, Qianli MA. A survey on ensemble learning[J]. Front. Comput. Sci., 2020, 14(2): 241-258.
[4] Hui XUE, Sen LI, Xiaohong CHEN, Yunyun WANG. A maximum margin clustering algorithm based on indefinite kernels[J]. Front. Comput. Sci., 2019, 13(4): 813-827.
[5] Ratha PECH, Dong HAO, Hong CHENG, Tao ZHOU. Enhancing subspace clustering based on dynamic prediction[J]. Front. Comput. Sci., 2019, 13(4): 802-812.
[6] Gaoqi HE, Qi CHEN, Dongxu JIANG, Yubo YUAN, Xingjian LU. Physical-barrier detection based collective motion analysis[J]. Front. Comput. Sci., 2019, 13(2): 426-436.
[7] Yun ZHANG, David LO, Xin XIA, Jianling SUN. Combined classifier for cross-project defect prediction: an extended empirical study[J]. Front. Comput. Sci., 2018, 12(2): 280-296.
[8] Wei-Neng CHEN, Da-Zhao TAN. Set-based discrete particle swarm optimization and its applications: a survey[J]. Front. Comput. Sci., 2018, 12(2): 203-216.
[9] Geng ZHANG, Yangmin LI, Yuhui SHI. Distributed learning particle swarm optimizer for global optimization of multimodal problems[J]. Front. Comput. Sci., 2018, 12(1): 122-134.
[10] Alampallam Ramaswamy VASUDEVAN,Subramanian SELVAKUMAR. Local outlier factor and stronger one class classifier based hierarchical model for detection of attacks in network intrusion detection dataset[J]. Front. Comput. Sci., 2016, 10(4): 755-766.
[11] Chenggang Clarence YAN,Hongtao XIE,Bing ZHANG,Yanping MA,Qiong DAI,Yizhi LIU. Fast approximate matching of binary codes with distinctive bits[J]. Front. Comput. Sci., 2015, 9(5): 741-750.
[12] Zhikun CHEN,Shuqiang YANG,Shuang TAN,Li HE,Hong YIN,Ge ZHANG. A new fragment re-allocation strategy for NoSQL database systems[J]. Front. Comput. Sci., 2015, 9(1): 111-127.
[13] Lu LIU,Tao PENG. Clustering-based topical Web crawling using CFu-tree guided by link-context[J]. Front. Comput. Sci., 2014, 8(4): 581-595.
[14] Qingliang MIAO,Qiudan LI,Daniel ZENG,Yao MENG,Shu ZHANG,Hao YU. Entity attribute discovery and clustering from online reviews[J]. Front. Comput. Sci., 2014, 8(2): 279-288.
[15] Yaobin HE, Haoyu TAN, Wuman LUO, Shengzhong FENG, Jianping FAN. MR-DBSCAN: a scalable MapReduce-based DBSCAN algorithm for heavily skewed data[J]. Front. Comput. Sci., 2014, 8(1): 83-99.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed