Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front. Comput. Sci.    2010, Vol. 4 Issue (4) : 475-479    https://doi.org/10.1007/s11704-010-0150-z
Research articles
DeepComp: towards a balanced system design for high performance computer systems
Mingfa ZHU1,Limin XIAO1,Li RUAN2,Qinfen HAO2,
1.State Key Laboratory of Software Development Environment, Beijing 100191, China;School of Computer Science and Engineering, Beihang University, Beijing 100191, China; 2.School of Computer Science and Engineering, Beihang University, Beijing 100191, China;
 Download: PDF(163 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Today, cluster-based computing is the mainstream architecture for high end computer systems. Balanced system design is critical for large scale cluster systems to achieve high efficiency. This paper addresses the practice on DeepComp high end computer systems toward a balanced system design. Methodologies of designing balanced large scale cluster systems are given. A method for balancing central processing unit (CPU) and memory hierarchy is addressed. For balancing computing nodes and I/O systems, two approaches are given: maximum bandwidth criterion and maximum number of computing nodes which can concurrently access I/O systems. Experiences of Lenovo high end cluster systems show that above methods are effective. Lenovo strategies toward a balanced system design for both peta and 10 peta scale high productivity computing systems (HPCSs).
Keywords high performance computer systems (HPCs)      high productivity computing systems (HPCSs)      cluster      balanced system design      
Issue Date: 05 December 2010
 Cite this article:   
Mingfa ZHU,Li RUAN,Limin XIAO, et al. DeepComp: towards a balanced system design for high performance computer systems[J]. Front. Comput. Sci., 2010, 4(4): 475-479.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-010-0150-z
https://academic.hep.com.cn/fcs/EN/Y2010/V4/I4/475
Lenovo Group. TechnicalReport of Lenovo DeepComp 6800. Beijing, 2003
Lenovo Group. TechnicalReport of Lenovo DeepComp 7000. Beijing, 2008
Zhu M. LenovoDeepComp 6800 in China grid computing. In: Proceedings of Workshop of China HPC & Grid Computing, SuperComputing Conference. 2004
Culler D, Gupta A, Sign J P. Parallel Computer Architecture: A Hardware/Software Approach. San Francisco: Morgan Kaufmann Publishers, 1998
Buyya R. HighPerformance Cluster Computing: Architectures and Systems, Vol. 1. Upper Saddle River: Prentice Hall, 1999
www.darpa.mil/ipto/Programs/hpcs/index.htm, USA, 2002
Krishnamurthy A. HPCSbenchmarks and test and specification environments. In: Proceedings of SC05. 2005
Xiao L, Zhu M. Exploiting the Capabilitiesof the Interconnection Network on Dawning-1000. Journal of Computer Science and Technology, 1999, 14(1): 49―55

doi: 10.1007/BF02952487
Xiao L, Zhu M. Active Messages on Dawning1000. Nat. Res. Center for Intelligent Comput. Syst., Acad. Sinica, Beijing, 1996
[1] Panthadeep BHATTACHARJEE, Pinaki MITRA. A survey of density based clustering algorithms[J]. Front. Comput. Sci., 2021, 15(1): 151308-.
[2] Zhihan JIANG, Yan LIU, Xiaoliang FAN, Cheng WANG, Jonathan LI, Longbiao CHEN. Understanding urban structures and crowd dynamics leveraging large-scale vehicle mobility data[J]. Front. Comput. Sci., 2020, 14(5): 145310-.
[3] Xibin DONG, Zhiwen YU, Wenming CAO, Yifan SHI, Qianli MA. A survey on ensemble learning[J]. Front. Comput. Sci., 2020, 14(2): 241-258.
[4] Hui XUE, Sen LI, Xiaohong CHEN, Yunyun WANG. A maximum margin clustering algorithm based on indefinite kernels[J]. Front. Comput. Sci., 2019, 13(4): 813-827.
[5] Ratha PECH, Dong HAO, Hong CHENG, Tao ZHOU. Enhancing subspace clustering based on dynamic prediction[J]. Front. Comput. Sci., 2019, 13(4): 802-812.
[6] Lin WANG, Depei QIAN, Rui WANG, Zhongzhi LUAN, Hailong YANG, Huaxiang ZHANG. A novel index system describing program runtime characteristics for workload consolidation[J]. Front. Comput. Sci., 2019, 13(3): 489-499.
[7] Gaoqi HE, Qi CHEN, Dongxu JIANG, Yubo YUAN, Xingjian LU. Physical-barrier detection based collective motion analysis[J]. Front. Comput. Sci., 2019, 13(2): 426-436.
[8] Anna ZHU, Seiichi UCHIDA. Scene word recognition from pieces to whole[J]. Front. Comput. Sci., 2019, 13(2): 292-301.
[9] Munish SAINI, Kuljit Kaur CHAHAL. Change profile analysis of open-source software systems to understand their evolutionary behavior[J]. Front. Comput. Sci., 2018, 12(6): 1105-1124.
[10] Donggang CAO, Lianghuan KANG, Hanglong ZHAN, Hong MEI. Towards application-level elasticity on shared cluster: an actor-based approach[J]. Front. Comput. Sci., 2017, 11(5): 803-820.
[11] Jian LIU,Huanqing DONG,Junwei ZHANG,Zhenjun LIU,Lu XU. HWM: a hybrid workload migration mechanism of metadata server cluster in data center[J]. Front. Comput. Sci., 2017, 11(1): 75-87.
[12] Alampallam Ramaswamy VASUDEVAN,Subramanian SELVAKUMAR. Local outlier factor and stronger one class classifier based hierarchical model for detection of attacks in network intrusion detection dataset[J]. Front. Comput. Sci., 2016, 10(4): 755-766.
[13] Chenggang Clarence YAN,Hongtao XIE,Bing ZHANG,Yanping MA,Qiong DAI,Yizhi LIU. Fast approximate matching of binary codes with distinctive bits[J]. Front. Comput. Sci., 2015, 9(5): 741-750.
[14] Zhikun CHEN,Shuqiang YANG,Shuang TAN,Li HE,Hong YIN,Ge ZHANG. A new fragment re-allocation strategy for NoSQL database systems[J]. Front. Comput. Sci., 2015, 9(1): 111-127.
[15] Lu LIU,Tao PENG. Clustering-based topical Web crawling using CFu-tree guided by link-context[J]. Front. Comput. Sci., 2014, 8(4): 581-595.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed