Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front Comput Sci    2012, Vol. 6 Issue (1) : 111-121    https://doi.org/10.1007/s11704-011-1192-6
RESEARCH ARTICLE
Prediction of urban human mobility using large-scale taxi traces and its applications
Xiaolong LI1, Gang PAN1, Zhaohui WU1, Guande QI1, Shijian LI1, Daqing ZHANG2, Wangsheng ZHANG1, Zonghui WANG1()
1. Department of Computer Science, Zhejiang University, Hangzhou 310027, China; 2. Institut TELECOM SudParis, 91011 Evry Cedex, France
 Download: PDF(665 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This paper investigates human mobility patterns in an urban taxi transportation system. This work focuses on predicting humanmobility fromdiscovering patterns of in the number of passenger pick-ups quantity (PUQ) from urban hotspots. This paper proposes an improved ARIMA based prediction method to forecast the spatial-temporal variation of passengers in a hotspot. Evaluation with a large-scale realworld data set of 4 000 taxis’ GPS traces over one year shows a prediction error of only 5.8%. We also explore the application of the prediction approach to help drivers find their next passengers. The simulation results using historical real-world data demonstrate that, with our guidance, drivers can reduce the time taken and distance travelled, to find their next passenger, by 37.1% and 6.4%, respectively.

Keywords urban traffic      GPS traces      hotspots      human mobility prediction      auto-regressive integrated moving average (ARIMA)     
Corresponding Author(s): WANG Zonghui,Email:zjuzhwang@zju.edu.cn   
Issue Date: 01 February 2012
 Cite this article:   
Zhaohui WU,Guande QI,Shijian LI, et al. Prediction of urban human mobility using large-scale taxi traces and its applications[J]. Front Comput Sci, 2012, 6(1): 111-121.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-011-1192-6
https://academic.hep.com.cn/fcs/EN/Y2012/V6/I1/111
1 Zhang D, Guo B, Yu Z. The emergence of social and community intelligence. Computer , 2011, 44(7): 21-28
doi: 10.1109/MC.2011.65
2 Ratti C, Pulselli R M, Williams S, Frenchman D. Mobile Landscapes: using location data from cell phones for urban analysis. Environment and Planning B: Planning and Design , 2006, 33(5): 727-748
doi: 10.1068/b32047
3 Zhu H, Zhu Y, Li M, Ni L. SEER: metropolitan-scale traffic perception based on lossy sensory data. In: Proceedings of the 28th Conference on Computer Communications . 2009, 217-225
4 Calabrese F, Pereira F C, Lorenzo G D, Liu L, Ratti C. The geography of taste: analyzing cell-phone mobility and social. In: Proceedings of the 8th International Conference on Pervasive Computing . 2010, 22-37
5 Girardin F, Blat J, Calabrese F, Fiore F, Ratti C. Digital Footprinting: uncovering tourists with user-generated content. IEEE Pervasive Computing , 2008, 7(4): 36-43
doi: 10.1109/MPRV.2008.71
6 Ahas R, Aasa A, Silm S, Tiru M. Mobile positioning data in tourism studies and monitoring: case study in Tartu, Estonia. In: Proceedings of International Conference on Information and Communication Technologies in Tourism . 2007, 119-128
7 Girardin F, Vaccari A, Gerber A, Biderman A, Ratti C. Quantifying urban attractiveness from the distribution and density of digital footprints. International Journal of Spatial Data Infrastructures Research , 2009, 4: 175-200
8 González M, Hidalgo C, Barabasi A. Understanding individual human mobility patterns. Nature , 2008, 453: 779-782
doi: 10.1038/nature06958
9 McNamara L, Mascolo C, Capra L. Media sharing based on collocation prediction in urban transport. In: Proceedings of the 14th ACM Annual International Conference on Mobile Computing and Networking . 2008, 58-69
doi: 10.1145/1409944.1409953
10 Froehlich J, Neumann J, Oliver N. Sensing and predicting the pulse of the city through shared bicycling. In: Proceedings of the 21st International Joint Conference on Artificial Intelligence . 2009, 1420-1426
11 Kaltenbrunner A, Meza R, Grivolla J, Codina J, Banchs R. Urban cycles and mobility patterns: exploring and predicting trends in a bicyclebased public transport system. Pervasive and Mobile Computing , 2010, 6(4): 455-466
doi: 10.1016/j.pmcj.2010.07.002
12 Ziebart B, Maas A, Dey A, Bagnell J. Navigate like a cabbie: probabilistic reasoning from observed context-aware behavior. In: Proceedings of the 10th ACM International Conference on Ubiquitous Computing . 2008, 322-331
doi: 10.1145/1409635.1409678
13 Yuan J, Zheng Y, Zhang C, Xie W, Xie X, Sun G, Huang Y. T-Drive: driving directions based on taxi trajectories. In: Proceedings of the 18th ACM International Conference on Advances in Geographic Information Systems . 2010, 99-108
14 Liu L, Andris C, Ratti C. Uncovering cabdrivers’ behavior patterns from their digital traces. Computers, Environment and Urban Systems , 2010, 34(6): 541-548
doi: 10.1016/j.compenvurbsys.2010.07.004
15 Zheng Y, Liu Y, Yuan J, Xie X. Urban computing with taxicabs. In: Proceedings of the 13th ACM International Conference on Ubiquitous Computing . 2011, 89-98
16 Zhang D, Li N, Zhou Z, Chen C, Sun L, Li S. iBAT: detecting anomalous taxi trajectories from GPS traces. In: Proceedings of the 13th ACM International Conference on Ubiquitous Computing . 2011, 99-108
17 Phithakkitnukoon S, Veloso M, Bento C, Biderman A, Ratti C. Taxi-Aware Map: identifying and predicting vacant taxis in the city. In: Proceedings of the 1st International Joint Conference on Ambient Intelligence . 2010, 86-95
18 Chang H W, Tai Y C, Hsu Y J. Context-aware taxi demand hotspots prediction. International Journal of Business Intelligence and Data Mining , 2010, 5(1): 3-18
doi: 10.1504/IJBIDM.2010.030296
19 Ge Y, Xiong H, Tuzhilin A, Xiao K, Gruteser M. An energy-efficient mobile recommender system. In: Proceedings of the 16th ACM Inter national Conference on Knowledge Discovery and Data mining . 2010, 899-908
20 Yuan J, Zheng Y, Zhang L, Xie X, Sun G. Where to find my next passenger? In: Proceedings of the 13th ACM International Conference on Ubiquitous Computing . 2011, 109-118
21 Qi G, Li X, Li S, Pan G, Zhang D. Measuring social functions of city regions from large-scale taxi behaviors. In: Proceedings of the 9th IEEE International Conference on Pervasive Computing and Communications, WiP . 2011, 384-388
22 Beucher S, Lantuejoul C. Use of watersheds in contour detection. In: Proceedings of the International Workshop on Image Processing: Realtime Edge and Motion Detection/Estimation . 1979
23 Box G, Jenkins G, Reinsel G. Time Series Analysis: Forecasting and Control. 4th ed . Hoboken: John Wiley & Sons, 2008
24 Makridakis S, Hibon M. The M3-Competition: results, conclusions and implications. International Journal of Forecasting , 2000, 16(4): 451-476
doi: 10.1016/S0169-2070(00)00057-1
25 Cooper R. Introduction to Queueing Theory. New York: Macmillan, 1972
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed