Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front Comput Sci Chin    0, Vol. Issue () : 148-157    https://doi.org/10.1007/s11704-011-9134-x
RESEARCH ARTICLE
Fingerprint segmentation based on an AdaBoost classifier
Eryun LIU1, Heng ZHAO1, Fangfei GUO1, Jimin LIANG1(), Jie TIAN1,2
1. Life Sciences Research Center, School of Life Sciences and Technology, Xidian University, Xi’an 710071, China; 2. Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
 Download: PDF(513 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Fingerprint segmentation is one of the most important preprocessing steps in an automatic fingerprint identification system (AFIS). Accurate segmentation of a fingerprint will greatly reduce the computation time of the following processing steps, and the most importantly, exclude many spurious minutiae located at the boundary of foreground. In this paper, a new fingerprint segmentation algorithm is presented. First, two new features, block entropy and block gradient entropy, are proposed. Then, an AdaBoost classifier is designed to discriminate between foreground and background blocks based on these two features and five other commonly used features. The classification error rate (Err) and McNemar’s test are used to evaluate the performance of our method. Experimental results on FVC2000, FVC2002 and FVC2004 show that our method outperforms other methods proposed in the literature both in accuracy and stability.

Keywords fingerprint segmentation      entropy      gradient entropy      AdaBoost classifier      McNemar’s test     
Corresponding Author(s): LIANG Jimin,Email:jimleung@mail.xidian.edu.cn   
Issue Date: 05 June 2011
 Cite this article:   
Eryun LIU,Heng ZHAO,Fangfei GUO, et al. Fingerprint segmentation based on an AdaBoost classifier[J]. Front Comput Sci Chin, 0, (): 148-157.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-011-9134-x
https://academic.hep.com.cn/fcs/EN/Y0/V/I/148
Fig.1  Sample images of FVC2000 database
Fig.2  Entropy and Gradient-entropy feature image of fingerprint. (a) Original image; (b) entropy image; (c) gradient-entropy image
Fig.3  Two examples of post processing. (a), (d) before post processing; (b), (e) the results after morphology operation; (c), (f) the results of contour smoothing
Sensor typeResolution
FVC2000DB1Low-cost optical sensor500 dpi
DB2Low-cost capacitive sensor500 dpi
DB3Optical sensor500 dpi
DB4Synthetic generator≈500 dpi
Sensor typeResolution
FVC2002DB1Optical sensor500 dpi
DB2Optical sensor569 dpi
DB3Capacitive sensor500 dpi
DB4SFinGe v2.51≈500 dpi
Sensor typeResolution
FVC2004DB1Optical sensor500 dpi
DB2Optical sensor500 dpi
DB3Thermal sweeping sensor512 dpi
DB4SFinGe v3.0≈500 dpi
Tab.1  Parameters of the FVC databases [,,]
Fig.4  Segmentation results by (a) entropy feature; (b) gradient-entropy feature; (c) coherence feature; (d) mean feature; (e) variance feature; (f) Gabor mean feature; (g) Gabor standard deviation feature; (h) majority voting; (i) AdaBoost classifier
Fig.5  (s) of FVC2000 for (a) DB1; (b) DB2; (c) DB3; (d) DB4
Fig.6  (s) of FVC2002 for (a) DB1; (b) DB2; (c) DB3; (d) DB4
Fig.7  (s) of FVC2004 for (a) DB1; (b) DB2; (c) DB3; (d) DB4
A succeededA failed
B succeededNssNsf
B failedNfsNff
Tab.2  Test results for two algorithms ( and )
DB1DB2DB3DB4
proposed vs [3]Nss, Nsf379584, 13493384279, 19479906367, 32412344643, 4179
Nfs, Nff19904, 2497823085, 5104754118, 7150612147, 17541
Z-value35.075517.473773.786462.3527
confidence100%100%100%100%
proposed vs [4]Nss, Nsf377891, 14020381987, 24094905953, 37859343360, 5018
Nfs, Nff21590, 2445825382, 4643454563, 6606913426, 16723
Z-value40.11005.786054.942361.9033
confidence100%100%100%100%
Tab.3  Comparison of proposed algorithm with [] and [] on FVC2000 databases
DB1DB2DB3DB4
proposed vs [3]Nss, Nsf693619, 11229753707, 15478400977, 6473501607, 6964
NfsNff21762, 1309416573, 3736011064, 191896144, 23372
Z-value57.98476.110834.66057.1535*
confidence100%100%100%100%
proposed vs [4]Nss, Nsf693162, 11618751748, 17600397466, 7650496397, 7802
Nfs, Nff22208, 1272418532, 3523214591, 1800211344, 22565
Z-value57.57444.897846.535325.5610
confidence100%100%100%100%
Tab.4  Comparison of proposed algorithm with [] and [] on FVC2002 databases
DB1DB2DB3DB4
proposed vs [3]Nss, Nsf1446598, 9815534474, 10088619718, 11585488083, 5688
Nfs, Nff34674, 2122035531, 2801339887, 2919713120, 31234
Z-value117.8528119.1183124.743054.1846
confidence100%100%100%100%
proposed vs [4]Nss, Nsf1460410, 11390537737, 10666609469, 13425469098, 10840
Nfs, Nff20889, 1967432296, 2745750118, 2735332081, 26063
Z-value52.8655104.3504145.5585102.5226
confidence100%100%100%100%
Tab.5  Comparison of proposed algorithm with [] and [] on FVC2004 databases
1 Maio D, Maltoni D, Cappelli R, Wayman J L, Jain A K. FVC2000: fingerprint verification competition. IEEE Transactions on Pattern Analysis and Machine Intelligence , 2002, 24(3): 402–412
doi: 10.1109/34.990140
2 Hong L, Wan Y F, Jain A K. Fingerprint image enhancement: algorithm and performance evaluation. IEEE Transactions on Pattern Analysis and Machine Intelligence , 1998, 20(8): 777–789
doi: 10.1109/34.709565
3 Bazen A M, Gerez S H. Segmentation of fingerprint images. In: Proceedings of ProRISC 2001 Workshop on Circuits, Systems and Signal Processing. 2001, 276–280
4 Chen X J, Tian J, Cheng J G, Yang X. Segmentation of fingerprint images using linear classifier. EURASIP Journal on Applied Signal Processing , 2004, 2004(4): 480–494
doi: 10.1155/S1110865704309194
5 Zhan X S, Sun Z C, Yin Y L, Chen Y. A method based on the Markov chain Monte Carlo for fingerprint image segmentation. In: Proceedings of 2nd International Conference on Fuzzy Systems and Knowledge Discovery. 2005, 240–248
6 Houlding D, Vaisey J. Low entropy image pyramids for efficient lossless coding. IEEE Transactions on Image Processing , 1995, 4(8): 1150–1153
7 Wallace K D, Marsh J N, Baldwin S L, Connolly A M, Keeling R, Lanza G M, Wickline S A, Hughes M S. Sensitive ultrasonic delineation of steroid treatment in living dystrophic mice with energy-based and entropy-based radio frequency signal processing. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control , 2007, 54(11): 2291–2299
8 Battle D J, Harrison R P, Hedley M. Maximum entropy image reconstruction from sparsely sampled coherent field data. IEEE Transactions on Image Processing , 1997, 6(8): 1139–1147
9 Shen L L, Kot A C, Koo W M. Quality measures of fingerprint images. In: Proceedings of 3rd International Conference on Audio- and Video-Based Biometric Person. 2001, 266–271
10 Freund Y, Schapire R E. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences , 1997, 55(1): 119–139
11 Duda R O, Hart P E, Stork D G. Pattern Classification.2nd ed. New York: John Wily & Sons, Inc., 2000
12 Freund Y, Schapire R E. A short introduction to boosting. Journal of Japanese Society for Artificial Intelligence , 1999, 14(5): 771–780
13 Zheng X L, Wang Y S, Zhao X Y. Fingerprint image segmentation using active contour model. In: Proceedings of 4th International Conference on Image and Graphics. 2007, 437–441
14 Clark A F, Clark C. Performance characterization in computer vision: a tutorial.http://citeseerx.ist.psu.edu/viewdoc/download?
doi: 10.1.1.97.8187&rep=rep1&type=pdf
15 Maio D, Maltoni D, Cappelli R, Wayman J L, Jain A K. FVC2002: second fingerprint verification competition. In: Proceedings of 16th International Conference on Pattern Recognition. 2002, 811–814
16 Maio D, Maltoni D, Cappelli R, Wayman J L, Jain A K. FVC2004: Third fingerprint verification competition. In: Proceedings of 1st International Conference on Biometric Authentication. 2004, 1–7
[1] Mingzhao WANG, Henry HAN, Zhao HUANG, Juanying XIE. Unsupervised spectral feature selection algorithms for high dimensional data[J]. Front. Comput. Sci., 2023, 17(5): 175330-.
[2] Pengpai WANG, Mingliang WANG, Yueying ZHOU, Ziming XU, Daoqiang ZHANG. Multiband decomposition and spectral discriminative analysis for motor imagery BCI via deep neural network[J]. Front. Comput. Sci., 2022, 16(5): 165328-.
[3] Je Sen TEH, Weijian TENG, Azman SAMSUDIN, Jiageng CHEN. A post-processing method for true random number generators based on hyperchaos with applications in audio-based generators[J]. Front. Comput. Sci., 2020, 14(6): 146405-.
[4] Rizwan Ahmed KHAN, Alexandre MEYER, Hubert KONIK, Saida BOUAKAZ. Saliency-based framework for facial expression recognition[J]. Front. Comput. Sci., 2019, 13(1): 183-198.
[5] Sudipta ROY, Debnath BHATTACHARYYA, Samir Kumar BANDYOPADHYAY, Tai-Hoon KIM. An improved brain MR image binarization method as a preprocessing for abnormality detection and features extraction[J]. Front. Comput. Sci., 2017, 11(4): 717-727.
[6] Yun SONG,Zhihui LI,Yongming LI,Ren XIN. The optimal information rate for graph access structures of nine participants[J]. Front. Comput. Sci., 2015, 9(5): 778-787.
[7] Yongjian ZHAO, Hong HE, Jianxun Mi. Noisy component extraction with reference[J]. Front Comput Sci, 2013, 7(1): 135-144.
[8] Chaofeng SHA, Jian GONG, Aoying ZHOU, . Mining non-redundant diverse patterns: an information theoretic perspective[J]. Front. Comput. Sci., 2010, 4(1): 89-99.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed