Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front Comput Sci    2013, Vol. 7 Issue (1) : 135-144    https://doi.org/10.1007/s11704-013-1135-5
RESEARCH ARTICLE
Noisy component extraction with reference
Yongjian ZHAO1(), Hong HE1, Jianxun Mi2,3
1. School of Information Engineering, Shandong University,Weihai 264209, China; 2. Bio-Computing Research Center, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, China; 3. Key Laboratory of Network Oriented Intelligent Computation, Shenzhen 518055, China
 Download: PDF(781 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Blind source extraction (BSE) is particularly attractive to solve blind signal mixture problems where only a few source signals are desired. Many existing BSE methods do not take into account the existence of noise and can only work well in noise-free environments. In practice, the desired signal is often contaminated by additional noise. Therefore, we try to tackle the problem of noisy component extraction. The reference signal carries enough prior information to distinguish the desired signal from signal mixtures. According to the useful properties of Gaussian moments, we incorporate the reference signal into a negentropy objective function so as to guide the extraction process and develop an improved BSE method. Extensive computer simulations demonstrate its validity in the process of revealing the underlying desired signal.

Keywords blind signal processing      reference signal      Gaussian moments      negentropy      objective function      biomedical signal      measure      performance index     
Corresponding Author(s): ZHAO Yongjian,Email:zhaoyj@sdu.edu.cn   
Issue Date: 01 February 2013
 Cite this article:   
Yongjian ZHAO,Hong HE,Jianxun Mi. Noisy component extraction with reference[J]. Front Comput Sci, 2013, 7(1): 135-144.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-013-1135-5
https://academic.hep.com.cn/fcs/EN/Y2013/V7/I1/135
1 Cichocki A, Amari S. Adaptive blind signal and image processing. New York: Wiley, 2003
2 Hyv?rinen A, Karhunen J, Oja E. Independent component analysis. New York: Wiley, 2001
3 Zhao Y J, Liu B Q, Wang S. A robust extraction algorithm for biomedical signals from noisy mixtures. Frontiers of Computer Science in China , 2011, 5(4): 387-394
doi: 10.1007/s11704-011-1043-5
4 Barros A K, Cichocki A. Extraction of specific signals with temporal structure. Neural Computation , 2001, 13(9): 1995-2003
doi: 10.1162/089976601750399272
5 Santata E, Principe J C, Santana E E. Extraction of signals with specific temporal structure using kernel methods. IEEE Transactions on Signal Processing , 2010, 58(10): 5142-5150
doi: 10.1109/TSP.2010.2053359
6 Leong W Y, Mandic D P. Noisy component extraction (NoiCE). IEEE Transactions on Circuits and Systems , 2010, 57(3): 664-671
doi: 10.1109/TCSI.2009.2024988
7 Lu W, Rajapakse J C. ICA with reference. Neurocomputing , 2006, 69(16-18): 2244-2257
doi: 10.1016/j.neucom.2005.06.021
8 Lu W, Rajapakse J C. Approach and applications of constrained ICA. IEEE Transactions on Neural Networks , 2005, 16(1): 203-212
doi: 10.1109/TNN.2004.836795
9 Huang D S, Mi J X. A new constrained independent component analysis method. IEEE Transactions on Neural Networks , 2007, 18(5): 1532-1535
doi: 10.1109/TNN.2007.895910
10 Lin Q H, Zheng Y R, Yin F L. A fast algorithm for one-unit ICA-R. Information Science , 2007, 177: 1265-1275
doi: 10.1016/j.ins.2006.09.011
11 James C J, Gibson O J. Temporally constrained ICA: an application to artifact rejection in electromagnetic brain signal analysis. IEEE Transactions on Biomedical Engineering , 2003, 50(9): 1108-1116
doi: 10.1109/TBME.2003.816076
12 Zhang Z L. Morphologically constrained ICA for extracting weak temporally correlated signals. Neurocomputing , 2008, 71(7-9): 1669-1679
doi: 10.1016/j.neucom.2007.04.004
13 Hyv?rinen A. Gaussian moments for noisy independent component analysis. IEEE Signal Processing Letters , 1999, 6(6): 145-147
doi: 10.1109/97.763148
14 James C J, Hesse C W. Independent component analysis for biomedical signals. Physiological Measurement , 2005, 26(1): 15-39
doi: 10.1088/0967-3334/26/1/R02
15 Liu W, Mandic D P. A normalized kurtosis-based algorithm for blind source extraction from noisy measurements. Signal Processing , 2006, 86(7): 1580-1585
doi: 10.1016/j.sigpro.2005.09.001
[1] Jian SUN, Pu-Feng DU. Predicting protein subchloroplast locations: the 10th anniversary[J]. Front. Comput. Sci., 2021, 15(2): 152901-.
[2] Ling SHEN, Richang HONG, Yanbin HAO. Advance on large scale near-duplicate video retrieval[J]. Front. Comput. Sci., 2020, 14(5): 145702-.
[3] Samuel IRVING, Bin LI, Shaoming CHEN, Lu PENG, Weihua ZHANG, Lide DUAN. Computer comparisons in the presence of performance variation[J]. Front. Comput. Sci., 2020, 14(1): 21-41.
[4] Yu HONG, Kai WANG, Weiyi GE, Yingying QIU, Guodong ZHOU. Cursor momentum for fascination measurement[J]. Front. Comput. Sci., 2019, 13(2): 396-412.
[5] Philipp V. ROUAST, Marc T. P. ADAM, Raymond CHIONG, David CORNFORTH, Ewa LUX. Remote heart rate measurement using low-cost RGB face video: a technical literature review[J]. Front. Comput. Sci., 2018, 12(5): 858-872.
[6] Sukhveer SINGH, Harish GARG. Comments on “Some new distance measures for type-2 fuzzy sets and distance measure based ranking for group decision making problems”[J]. Front. Comput. Sci., 2018, 12(2): 396-400.
[7] Tao WU, Qiusong YANG, Yeping HE. A secure and rapid response architecture for virtual machine migration from an untrusted hypervisor to a trusted one[J]. Front. Comput. Sci., 2017, 11(5): 821-835.
[8] Jing LIU, Mingxing ZHOU, Shuai WANG, Penghui LIU. A comparative study of network robustness measures[J]. Front. Comput. Sci., 2017, 11(4): 568-584.
[9] Li ZHANG,Songcan CHEN,Xuejun LIU. Detecting differential expression from RNA-seq data with expression measurement uncertainty[J]. Front. Comput. Sci., 2015, 9(4): 652-663.
[10] Hongpeng YIN,Jinxing LI,Yi CHAI,Simon X. YANG. A survey on distributed compressed sensing: theory and applications[J]. Front. Comput. Sci., 2014, 8(6): 893-904.
[11] Pushpinder SINGH. Some new distance measures for type-2 fuzzy sets and distance measure based ranking for group decision making problems[J]. Front. Comput. Sci., 2014, 8(5): 741-752.
[12] Iftikhar Ahmed KHAN, Willem-Paul BRINKMAN, Robert HIERONS. Towards estimating computer users’ mood from interaction behaviour with keyboard and mouse[J]. Front Comput Sci, 2013, 7(6): 943-954.
[13] Anca Maria IVANESCU, Marc WICHTERICH, Christian BEECKS, Thomas SEIDL. The ClasSi coefficient for the evaluation of ranking quality in the presence of class similarities[J]. Front Comput Sci, 2012, 6(5): 568-580.
[14] Guangtao XUE, Ke ZHANG, Qi HE, Hongzi ZHU. Real-time urban traffic information estimation with a limited number of surveillance cameras[J]. Front Comput Sci, 2012, 6(5): 547-559.
[15] Tim SCHLüTER, Stefan CONRAD. An approach for automatic sleep stage scoring and apnea-hypopnea detection[J]. Front Comput Sci, 2012, 6(2): 230-241.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed