Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front. Comput. Sci.    2013, Vol. 7 Issue (4) : 558-570    https://doi.org/10.1007/s11704-013-1151-5
RESEARCH ARTICLE
Assessing the quality of metamodels
Zhiyi MA1,2(), Xiao HE2,3, Chao LIU4
1. Software Institute, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China
2. Ministry of Education Key Laboratory of High Confidence Software Technologies (Peking University), Beijing 100871, China
3. School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing 100083, China
4. School of Economics, Shandong University of Finance and Economics, Jinan 250202, China
 Download: PDF(0 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The complexity and diversity of modern software demands a variety of metamodel-based modeling languages for software development. Existing languages change continuously, and new ones are constantly emerging. In this situation, and especially for metamodel-based modeling languages, a quality assurance mechanism for metamodels is needed. This paper presents an approach to assessing the quality of metamodels. A quality model, which systematically characterizes and classifies quality attributes, and an operable measuring mechanism for effectively assessing the quality of metamodels based on the quality model, are presented, using UML as the main example.

Keywords quality assessment      metamodels      metric     
Corresponding Author(s): Zhiyi MA   
Issue Date: 01 August 2013
 Cite this article:   
Zhiyi MA,Xiao HE,Chao LIU. Assessing the quality of metamodels[J]. Front. Comput. Sci., 2013, 7(4): 558-570.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-013-1151-5
https://academic.hep.com.cn/fcs/EN/Y2013/V7/I4/558
1 OMG. Unified modeling language.
2 C Kobryn. Will UML 2.0 be agile or awkward? Communications of the ACM, 2002, 45(1): 107−110
https://doi.org/10.1145/502269.502306
3 B Henderson-Sellers. UML — the good, the bad or the ugly? Perspectives from a panel of experts. Software System Model, 2005, 4(1): 4−13
https://doi.org/10.1007/s10270-004-0076-8
4 D Dori. Why significant UML change is unlikely. Communications of the ACM, 2002, 5(11): 82−85
5 D Haerl, B Rumpe. Meaningful modeling: what’s the semantics of “semantics”? IEEE Computer, 2004, 37(10): 64−72
https://doi.org/10.1109/MC.2004.172
6 Z Y Ma, J F Zhao, X W Meng, W J Zhang. Research and implementation of jade bird object-oriented software modeling tool. Journal of Software, 2003, 14(1): 97−102
7 Z Y Ma, Y B Jiang, J Y Li, Y F Dai. Research and implementation of software modeling tool based on UML. ACTA Electronica Sinica, 2002, 12(A): 2049−2051
8 Z Y Ma, H H Ma, N B Zhang, Z P Lao, Z G Zhu. Development of the software development platform based on UML2.0. Journal of Nanjing University, 2005, 41(z1): 374−381
9 C Atkinson, T Kuhne. The essence of multilevel metamodeling. In: Proceedings of the 4th International Conference on the Unified Modeling Language. LNCS 2185, 2001, 19−33
10 D Harel, B Rumpe. Modeling languages: syntax, semantics and all that stuff Technical Paper Number MCS00-16. 2000
11 OMG. Object constraint language, 2003
12 OMG. Common warehouse metamodel V 1.1. 2003
13 OMG. Systems modeling language V1.2. 2010
14 J M Fuentes, V Quintana, J Llorens, G Génova, R Prieto-Dáz. Errors in the UML metamodel. ACM SIGSOFT Software Engineering Notes, 2003, 28(6): 1−13
https://doi.org/10.1145/966221.966236
15 C Kobryn. UML 3.0 and the future of modeling. Software and Systems Modeling, 2004, 3(1): 4−8
https://doi.org/10.1007/s10270-004-0051-4
16 IBM. UML 2.0 profile for software services
17 OMG. Business process modeling notation, V1.1.
18 B Selic, G Ramackers, C Kobryn. Evolution, not revolution. Communications of the ACM, 2002, 45(11): 70−72
https://doi.org/10.1145/581571.581595
19 T Weigert. UML 2.0 RFI response overview. OMG Document ad/00- 01-07, 2000
20 B P Douglass. UML for systems engineering. Computer Design’s: Electronic Systems Technology and Design, 1998, 37(11): 44−49
21 K Siau, Q Cao. How complex is the unified modeling language? Advanced Topics in Database Research, 2002, 1: 294−306
22 ISO/IEC. Information technology-software product quality. ISO-IEC Standard 9126, 2005
23 OMG. Meta object facility 2.0, 2006
24 Y Wand, R Weber. An ontological model of an information system. IEEE Transaction of Software Engineering, 1990, 16(11): 1282−1292
https://doi.org/10.1109/32.60316
25 ISO/IEC. Standard for Information technology—software product evaluation—part 1: general overview. ISO/IEC 14598-1, 1999
26 J Bansiya, C G Davis. A hierarchical model for object-oriented design quality assessment. IEEE Transaction of Software Engineering, 2002, 28(1): 4−17
https://doi.org/10.1109/32.979986
27 B Unhelkar. Verification and validation for quality of UML 2.0models. A Wiley-Inter Science Publication, 2005
28 G A Miller. The magical number seven, plus or minus two: some limits on our capacity for processing information. The Psychological Review, 1956, 63: 81−97
https://doi.org/10.1037/h0043158
29 R Bendraou, J M Jézéquel, M P Gervais, X Blanc. A comparison of six uml-based languages for software process modeling. IEEE Transactions on Software Engineering, 2010, 36(5): 662−675
https://doi.org/10.1109/TSE.2009.85
30 A Bertolino, G D Angelis, A D Sandro, A Sabetta. Is my model right? Let me ask the expert. Journal of Systems and Software, 2011, 84(7): 1089−1099
https://doi.org/10.1016/j.jss.2011.01.054
31 D L Moody. The “physics” of notations: toward a scientific basis for constructing visual notations in software engineering. IEEE Transactions on Software Engineering, 2009, 35(6): 756−779
https://doi.org/10.1109/TSE.2009.67
32 H Liu, Z Y Ma, W Z Shao. Progress of research on metamodeling. Journal of Software, 2008, 19(6): 1317−1327
https://doi.org/10.3724/SP.J.1001.2008.01317
33 O I Lindland, G Sindre, A Sølvberg. Understanding quality in conceptual modeling. IEEE Software, 1994,11(2): 42−49
https://doi.org/10.1109/52.268955
34 J Bansiya. Evaluating framework architecture structural stability. ACM Computer Survey, 2000, 32(1es): 18−30
https://doi.org/10.1145/351936.351954
35 M Mattsson, J Bosch. Characterizing stability in evolving frameworks. In: Proceedings of the 29th International Conference on Technology of Object-Oriented Languages and Systems. 1999, 118−130
36 N Bolloju, F S K Leung. Assisting novice analysts in developing quality conceptual models with UML. Communication of ACM, 2006, 49(7): 108−112
https://doi.org/10.1145/1139922.1139926
37 A Hmood, I Keivanloo, J Rilling. SE-EQUAM-an evolvable quality metamodel. In: Proceedings of the 36th International Conference on Computer Software and Applications Workshops, 2012, 334−339
38 P Klint, R LäMmel, C Verhoef. Toward an engineering discipline for grammarware. ACM Transactions on Software Engineering and Methodology, 2005, 14(3): 331−380
https://doi.org/10.1145/1072997.1073000
39 L J Shan, H Zhu. Unifying the semantics of models and meta-models in the multi-layered UML meta-modelling hierarchy. International Journal of Software and Informatics, 2012, 6(2): 163−200
40 D B Sun, K Wong. On evaluating the layout of UML class diagrams for program comprehension. In: Proceedings of the 13th International Workshop on Program Comprehension, 2005, 317−326
41 H H Ma, W Z Shao, L Zhang, Z Y Ma, Y B Jiang. Applying OO metrics to assess UML meta-models. In: Proceedings of the 7th International Conference of UML. 2004, 12−26
[1] Hongsheng XU, Zihan CHEN, Yu ZHANG, Xin GENG, Siya MI, Zhihong YANG. Weakly supervised temporal action localization with proxy metric modeling[J]. Front. Comput. Sci., 2023, 17(2): 172309-.
[2] Qingqing GAN, Joseph K. LIU, Xiaoming WANG, Xingliang YUAN, Shi-Feng SUN, Daxin HUANG, Cong ZUO, Jianfeng WANG. Verifiable searchable symmetric encryption for conjunctive keyword queries in cloud storage[J]. Front. Comput. Sci., 2022, 16(6): 166820-.
[3] Hongbin XU, Weili YANG, Qiuxia WU, Wenxiong KANG. Endowing rotation invariance for 3D finger shape and vein verification[J]. Front. Comput. Sci., 2022, 16(5): 165332-.
[4] Awais KHAN, Aun IRTAZA, Ali JAVED, Tahira NAZIR, Hafiz MALIK, Khalid Mahmood MALIK, Muhammad Ammar KHAN. Defocus blur detection using novel local directional mean patterns (LDMP) and segmentation via KNN matting[J]. Front. Comput. Sci., 2022, 16(2): 162702-.
[5] Yan-Ping SUN, Min-Ling ZHANG. Compositional metric learning for multi-label classification[J]. Front. Comput. Sci., 2021, 15(5): 155320-.
[6] Zhenghui HU, Wenjun WU, Jie LUO, Xin WANG, Boshu LI. Quality assessment in competition-based software crowdsourcing[J]. Front. Comput. Sci., 2020, 14(6): 146207-.
[7] Fan LIU, Xiaomin JI, Gang HU, Jing GAO. A computer aided design method for car form and its application based on shape parameters[J]. Front. Comput. Sci., 2020, 14(6): 146703-.
[8] Qianchen YU, Zhiwen YU, Zhu WANG, Xiaofeng WANG, Yongzhi WANG. Estimating posterior inference quality of the relational infinite latent feature model for overlapping community detection[J]. Front. Comput. Sci., 2020, 14(6): 146323-.
[9] Yixuan TANG, Zhilei REN, Weiqiang KONG, He JIANG. Compiler testing: a systematic literature analysis[J]. Front. Comput. Sci., 2020, 14(1): 1-20.
[10] Ashish Kumar DWIVEDI, Anand TIRKEY, Santanu Kumar RATH. Software design pattern mining using classification-based techniques[J]. Front. Comput. Sci., 2018, 12(5): 908-922.
[11] Xiang FENG, Wanggen WAN, Richard Yi Da XU, Haoyu CHEN, Pengfei LI, J. Alfredo SÁNCHEZ. A perceptual quality metric for 3D triangle meshes based on spatial pooling[J]. Front. Comput. Sci., 2018, 12(4): 798-812.
[12] Yansheng DU, Zhihua CHEN, Changqing ZHANG, Xiaochun CAO. Research on axial bearing capacity of rectangular concrete-filled steel tubular columns based on artificial neural networks[J]. Front. Comput. Sci., 2017, 11(5): 863-873.
[13] Guoliang CHEN, Rui MAO, Kezhong LU. A parallel computing framework for big data[J]. Front. Comput. Sci., 2017, 11(4): 608-621.
[14] Weimin TAN,Bo YAN. A survey on high coherence visual media retargeting: recent advances and applications[J]. Front. Comput. Sci., 2016, 10(5): 778-796.
[15] Xuzhou LI,Yilong YIN,Yanbin NING,Gongping YANG,Lei PAN. A hybrid biometric identification framework for high security applications[J]. Front. Comput. Sci., 2015, 9(3): 392-401.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed