|
|
Context-sensitive Web service discovery over the bipartite graph model |
Rong ZHANG1( ), Koji ZETTSU2( ), Yutaka KIDAWARA2, Yasushi KIYOKI2,3( ), Aoying ZHOU1 |
1. Software Engineering Institute, East China Normal University, Shanghai 200062, China; 2. National Institute of Information and Communications Technology, Kyoto 619-0289, Japan; 3. Keio University, Kanagawa 252-8520, Japan |
|
|
Abstract As service oriented architecture (SOA) matures, service consumption demand leads to an urgent requirement for service discovery. Unlike Web documents, services are intended to be executed to achieve objectives and/or desired goals of users. This leads to the notion that service discovery should take the “usage context” of service into account as well as service content (descriptions) which have been well explored. In this paper, we introduce the concept of service context which is used to represent service usage. In query processing, both service content and service context are examined to identify services. We propose to represent service context by a weighted bipartite graph model. Based on the bipartite graph model, we reduce the gap between query space and service space by query expansion to improve recall. We also design an iteration algorithm for result ranking by considering service context-usefulness as well as content-relevance to improve precision. Finally, we develop a service search engine implementing this mechanism, and conduct some experiments to verify our idea.
|
Keywords
Web service
usage context
bipartite graph model
context-usefulness
|
Corresponding Author(s):
ZHANG Rong,Email:rzhang,ayzhou@sei.ecnu.edu.cn; ZETTSU Koji,Email:zettsu,kidawara@nict.go.jp; KIYOKI Yasushi,Email:kiyoki@sfc.keio.ac.jp
|
Issue Date: 01 December 2013
|
|
1 |
Fan J, Kambhampati S. A snapshot of public web services. Journal of the ACM SIGMOD Record , 2005, 34(1): 24-32 doi: 10.1145/1058150.1058156
|
2 |
Xu J, Croft W. Improving the effectiveness of information retrieval with local context analysis. ACM Transactions on Information Systems , 2000, 18(1): 79-112 doi: 10.1145/333135.333138
|
3 |
Dong X, Halevy A, Madhavan J, Nemes E, Zhang J. Similarity search for web services. In: Proceedings of VLDB . 2004, 372-383
|
4 |
Haveliwala T H. Topic-sensitive pagerank. In: Proceedings of WWW . 2002, 517-526
|
5 |
Page L, Brin S, Motwani R, Winograd, T. The PageRank citation ranking: bringing order to the Web. Stanford Digital Libraries Working Paper , 1998
|
6 |
Zhang R, Zettsu K, Kidawara Y, Kiyoki Y. Context-sensitive query expansion over the bipartite graph model forweb service search. In: Proceedings of DASFAA . 2011, 418-433
|
7 |
Morris M R, Teevan J. Enhancing collaborative web search with personalization: groupization, smart splitting, and group hit-highlighting. In: Proceedings of CSCW . 2008, 481-484
|
8 |
Medjahed B, Atif Y. Context-based matching for web service composition. Distributed and Parallel Databases , 2007, 21(1): 5-37 doi: 10.1007/s10619-006-7003-7
|
9 |
Erl T. Service-oriented architecture: a field guide to integrating XML and Web services. Upper Saddle River , NJ, USA: Prentice Hall, 2004
|
10 |
Ankolekar A, Burstein M, Hobbs J R, Lassila O, Martin D, McDermott D, McIlraith S A, Narayanan S, Paolucci M, Payne T. Daml-S: Web service description for the semantic web. In: Proceedings of ISWC . 2002, 348-363
|
11 |
Roman D, Keller U, Lausen H, De Bruijn J, Lara R, Stollberg M, Polleres A, Feier C, Bussler C, Fensel D. Web service modeling ontology. Journal Applied Ontology , 2005, 1(1): 77-106
|
12 |
Pautasso C, Zimmermann O, Leymann F. RESTful Web services vs. “big” Web services: making the right architectural decision. In: Proceedings of WWW . 2008, 805-814
|
13 |
Plebani P, Pernici B. Urbe: Web service retrieval based on similarity evaluation. IEEE Transactions on Knowledgement and Data Engineering , 2009, 21(11): 1629-1642 doi: 10.1109/TKDE.2009.35
|
14 |
Kleinberg J. Authoritative sources in a hyperlinked environment. Journal of the ACM , 1999 doi: 10.1145/324133.324140
|
15 |
Sebastiani F. Text categorization. Text Mining and its Applications , 2005, 109-129
|
16 |
Salton G, Buckley C. Term-weighting approaches in automatic text retrieval. Information Processing and Management , 1998, 24(5): 513-523 doi: 10.1016/0306-4573(88)90021-0
|
17 |
Mitchell T. Machine Learning. Boston: McGraw-Hill, 1997
|
18 |
Vectomova O, Wang Y. A study of the effect of term proximity on query expansion. Journal of Information Science , 2006, 32(4): 324-333 doi: 10.1177/0165551506065787
|
19 |
Hsu W H, Chang S F. Topic tracking across broadcast news videos with visual duplicates and semantic concepts. In: Proceedings of ICIP . 2006
|
20 |
Bourbaki N. Topological Vector Spaces. Springer , 1987 doi: 10.1007/978-3-642-61715-7
|
21 |
Liu L, Sun L, Rui Y, Shi Y, Yang S Q. Web video topic discovery and tracking via bipartite graph reinforcement model. In: Proceedings of WWW . 2008, 1009-1018
|
22 |
Salton G, McGill M J. Introduction to Modern Information Retrieval. McGraw-Hill , 1986
|
23 |
Yom-Tov E, Fine S, Carmel D, Darlow A. Learning to estimate query difficulty: including applications to missing content detection and distributed information retrieval. In: Proceedings of SIGIR . 2005, 512-519
|
24 |
Voorhees E, Harman D. Overview of the sixth text retrieval conference (TREC-6). Information Processing & Management , 2000, 36(1): 3-35 doi: 10.1016/S0306-4573(99)00043-6
|
25 |
Guo R, Chen D, Le J. Matching semantic web services across heterogeneous ontologies. In: Proceedings of CIT . 2005, 264-268
|
26 |
Wong J, Hong J I. Making mashups with marmite: towards end-user programming for the web. In: Proceedings of CHI . 2007, 1435-1444
|
27 |
Lee C, Helal S. Context attributes: an approach to enable contextawareness for service discovery. In: Proceedings of SAINT . 2003, 22-30
|
28 |
Segev A, Toch E. Context-based matching and ranking of web services for composition. IEEE Transactions on Services Computing , 2009, 2(3): 210-222 doi: 10.1109/TSC.2009.14
|
29 |
Yang Y, Mahon F, Willams M H, Pfeifer T. Context-aware dynamic personalised service re-composition in a pervasive service environment. In: Proceedings of UIC . 2006, 724-735
|
30 |
Bellur U, Kulkarni R. Improved matchmaking algorithm for semantic web services based on bipartite graph matching. In: Proceedings of ICWS . 2007, 86-93
|
31 |
Langville A, Meyer C. Google’s PageRank and Beyond: the Science of Search Engine Rankings. Princeton University Press , 2006
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|