|
|
|
Optimal binary codes and binary construction of quantum codes |
Weiliang WANG1,2,*( ),Yangyu FAN1,Ruihu LI2 |
1. School of Electronics and Information, Northwestern Polytechnical University, Xi’an 710072, China 2. Science College, Air Force Engineering University, Xi’an 710051, China |
|
|
|
|
Abstract This paper discusses optimal binary codes and pure binary quantum codes created using Steane construction. First, a local search algorithm for a special subclass of quasi-cyclic codes is proposed, then five binary quasi-cyclic codes are built. Second, three classical construction methods are generalized for new codes from old such that they are suitable for constructing binary self-orthogonal codes, and 62 binary codes and six subcode chains of obtained self-orthogonal codes are designed. Third, six pure binary quantum codes are constructed from the code pairs obtained through Steane construction. There are 66 good binary codes that include 12 optimal linear codes, 45 known optimal linear codes, and nine known optimal self-orthogonal codes. The six pure binary quantum codes all achieve the performance of their additive counterparts constructed by quaternary construction and thus are known optimal codes.
|
| Keywords
binary linear code
binary self-orthogonal code
quasi-cyclic code
Steane construction
quantum code
|
|
Corresponding Author(s):
Weiliang WANG
|
|
Issue Date: 27 November 2014
|
|
| 1 |
Shannon C E. A mathematical theory of communication. Bell System Technical Journal, 1948, 27: 379-423, 623-656
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
|
| 2 |
Huffman W C, Pless V. Fundamentals of Error-Correcting Codes. Cambridge University Press, 2003
https://doi.org/10.1017/CBO9780511807077
|
| 3 |
Grassl M. Code tables: bounds on the parameters of various types of codes. http://www.codetables.de/
|
| 4 |
Shor P W. Scheme for reducing decoherence in quantum computer memory. Physical Review A, 1995, 52: 2493-2496
https://doi.org/10.1103/PhysRevA.52.R2493
|
| 5 |
Steane A M. Error correcting codes in quantum theory. Physical Review Letters, 1996, 77: 793-797
https://doi.org/10.1103/PhysRevLett.77.793
|
| 6 |
Calderbank A R, Shor P W. Good quantum error-correcting codes exist. Physical Review A, 1996, 54: 1098-1105
https://doi.org/10.1103/PhysRevA.54.1098
|
| 7 |
Steane A M. Enlargement of calderbank-shor-steane quantum codes. IEEE Transactions on Information Theory, 1999, 45: 2492-2495
https://doi.org/10.1109/18.796388
|
| 8 |
Bouyuklieva S. Some optimal self-orthogonal and self-dual codes. Discrete Mathematics, 2004, 287: 1-10
https://doi.org/10.1016/j.disc.2004.06.010
|
| 9 |
Bouyuklieva S, Anton M, Wolfgang W. Automorphisms of extremal codes. IEEE Transactions on Information Theory, 2010, 56(5): 2091-2096
https://doi.org/10.1109/TIT.2010.2043763
|
| 10 |
Bouyuklieva S, Ostergard P R J. New constructions of optimal self-dual binary codes of length 54. Designs, Codes and Cryptography, 2006, 41(1): 101-109
https://doi.org/10.1007/s10623-006-0018-2
|
| 11 |
Bilous R.T. Enumeration of the binary self-dual codes of length 34. Journal of Combinatorial Mathematics and Combinatorial Computing, 2006, 59: 173-211
|
| 12 |
Harada M, Munemasa A. Classification of self-dual codes of length 36. Advances in Mathematics of Communications, 2012, 6(2): 229-235
https://doi.org/10.3934/amc.2012.6.229
|
| 13 |
Bouyuklieva S, Bouyukliev I. An algorithm for classification of binary self-dual codes. IEEE Transactions on Information Theory, 2012, 58(6): 3933-3940
https://doi.org/10.1109/TIT.2012.2190134
|
| 14 |
Aguilar-Melchor C, Gaborit P, KimJ L, Sok L, Sole P, Vega G. Classification of extremal and s-extremal binary self-dual codes of length 38. IEEE Transactions on Information Theory, 2012, 58(4): 2253-2262
https://doi.org/10.1109/TIT.2011.2177809
|
| 15 |
Betsumiya K, Harada M, Munemasa A. A complete classification of doubly even self-dual codes of length 40. http://arxiv.org/abs/1104.3727v4, 2013.3
|
| 16 |
Ruihu Li, Xueliang Li. Binary construction of quantum codes of minimum distances five and six. Discrete Mathematics, 2008, 308: 1603-1611
https://doi.org/10.1016/j.disc.2007.04.016
|
| 17 |
Ruihu Li, Xueliang Li. Binary construction of quantum codes of minimum distance three and four. IEEE Transactions on Information Theory, 2004, 50(6): 1331-1335
https://doi.org/10.1109/TIT.2004.828149
|
| 18 |
Sloane N A J. Is there a (72; 36) d= 16 self-dual code? IEEE Transactions on Information Theory, 1973, 19(2): 251
https://doi.org/10.1109/TIT.1973.1054975
|
| 19 |
Feulner T, Nebe G. The automorphism group of a self-dual binary [72; 36; 16] code does not contain Z7, Z3 × Z3, or D10. IEEE Transactions on Information Theory, 2012, 58(11): 6916-6924
https://doi.org/10.1109/TIT.2012.2208176
|
| 20 |
O’Brien E A, Willems W. On the automorphism group of a binary selfdual doubly-even [72; 36; 16] code. IEEE Transactions on Information Theory, 2011, 57(7): 4445-4451
https://doi.org/10.1109/TIT.2011.2145850
|
| 21 |
Daskalov R, Hristov P. New binary one-generator quasi-cyclic codes. IEEE Transactions on Information Theory, 2003, 49(11): 3001-3005
https://doi.org/10.1109/TIT.2003.819337
|
| 22 |
Chen E Z. New quasi-cyclic codes from simplex codes. IEEE Transactions on Information Theory, 2007, 53(3): 1193-1196
https://doi.org/10.1109/TIT.2006.890727
|
| 23 |
Grassl M, White G S. New codes from chains of quasi-cyclic codes. In: Proceedings of the 2005 IEEE International Symposium on Information Theory. 2005, 2095-2099
|
| 24 |
Lally K, Fitzpatrick P. Algebraic structure of quasicyclic codes. Discrete Applied Mathematics, 2001, 111: 157-175
https://doi.org/10.1016/S0166-218X(00)00350-4
|
| 25 |
Ling S, Sole P. On the algebraic structure of quasi-cyclic codes I: finite fields. 2005 IEEE International Sympium on Information Theory, 2001, 47(7): 2751-2759
|
| 26 |
Cayrel P L, Chabot C, Necer A. Quasi-cyclic codes as codes over rings of matrices. Finite Fields and Their Applications, 2010, 16: 100-115
https://doi.org/10.1016/j.ffa.2010.01.001
|
| 27 |
Cao Y L. 1-generator quasi-cyclic codes over finite chain rings. Applicable Algebra in Engineering, Communication and Computing, 2013, 24(1): 53-72
https://doi.org/10.1007/s00200-012-0182-8
|
| 28 |
Cao Y L, Gao J. Constructing quasi-cyclic codes from linear algebra theory. Designs, Codes and Cryptography, 2013, 67(1): 59-75
https://doi.org/10.1007/s10623-011-9586-x
|
| 29 |
Calderbank A R, Rains E M, Shor P W, Sloane N J A. Quantum error correction via codes over GF(4). IEEE Transactions on Information Theory, 1998, 44: 1369-1387
https://doi.org/10.1109/18.681315
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|