Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front. Comput. Sci.    2014, Vol. 8 Issue (6) : 1024-1031    https://doi.org/10.1007/s11704-014-3469-z
RESEARCH ARTICLE
Optimal binary codes and binary construction of quantum codes
Weiliang WANG1,2,*(),Yangyu FAN1,Ruihu LI2
1. School of Electronics and Information, Northwestern Polytechnical University, Xi’an 710072, China
2. Science College, Air Force Engineering University, Xi’an 710051, China
 Download: PDF(272 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This paper discusses optimal binary codes and pure binary quantum codes created using Steane construction. First, a local search algorithm for a special subclass of quasi-cyclic codes is proposed, then five binary quasi-cyclic codes are built. Second, three classical construction methods are generalized for new codes from old such that they are suitable for constructing binary self-orthogonal codes, and 62 binary codes and six subcode chains of obtained self-orthogonal codes are designed. Third, six pure binary quantum codes are constructed from the code pairs obtained through Steane construction. There are 66 good binary codes that include 12 optimal linear codes, 45 known optimal linear codes, and nine known optimal self-orthogonal codes. The six pure binary quantum codes all achieve the performance of their additive counterparts constructed by quaternary construction and thus are known optimal codes.

Keywords binary linear code      binary self-orthogonal code      quasi-cyclic code      Steane construction      quantum code     
Corresponding Author(s): Weiliang WANG   
Issue Date: 27 November 2014
 Cite this article:   
Weiliang WANG,Yangyu FAN,Ruihu LI. Optimal binary codes and binary construction of quantum codes[J]. Front. Comput. Sci., 2014, 8(6): 1024-1031.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-014-3469-z
https://academic.hep.com.cn/fcs/EN/Y2014/V8/I6/1024
1 Shannon C E. A mathematical theory of communication. Bell System Technical Journal, 1948, 27: 379-423, 623-656
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
2 Huffman W C, Pless V. Fundamentals of Error-Correcting Codes. Cambridge University Press, 2003
https://doi.org/10.1017/CBO9780511807077
3 Grassl M. Code tables: bounds on the parameters of various types of codes. http://www.codetables.de/
4 Shor P W. Scheme for reducing decoherence in quantum computer memory. Physical Review A, 1995, 52: 2493-2496
https://doi.org/10.1103/PhysRevA.52.R2493
5 Steane A M. Error correcting codes in quantum theory. Physical Review Letters, 1996, 77: 793-797
https://doi.org/10.1103/PhysRevLett.77.793
6 Calderbank A R, Shor P W. Good quantum error-correcting codes exist. Physical Review A, 1996, 54: 1098-1105
https://doi.org/10.1103/PhysRevA.54.1098
7 Steane A M. Enlargement of calderbank-shor-steane quantum codes. IEEE Transactions on Information Theory, 1999, 45: 2492-2495
https://doi.org/10.1109/18.796388
8 Bouyuklieva S. Some optimal self-orthogonal and self-dual codes. Discrete Mathematics, 2004, 287: 1-10
https://doi.org/10.1016/j.disc.2004.06.010
9 Bouyuklieva S, Anton M, Wolfgang W. Automorphisms of extremal codes. IEEE Transactions on Information Theory, 2010, 56(5): 2091-2096
https://doi.org/10.1109/TIT.2010.2043763
10 Bouyuklieva S, Ostergard P R J. New constructions of optimal self-dual binary codes of length 54. Designs, Codes and Cryptography, 2006, 41(1): 101-109
https://doi.org/10.1007/s10623-006-0018-2
11 Bilous R.T. Enumeration of the binary self-dual codes of length 34. Journal of Combinatorial Mathematics and Combinatorial Computing, 2006, 59: 173-211
12 Harada M, Munemasa A. Classification of self-dual codes of length 36. Advances in Mathematics of Communications, 2012, 6(2): 229-235
https://doi.org/10.3934/amc.2012.6.229
13 Bouyuklieva S, Bouyukliev I. An algorithm for classification of binary self-dual codes. IEEE Transactions on Information Theory, 2012, 58(6): 3933-3940
https://doi.org/10.1109/TIT.2012.2190134
14 Aguilar-Melchor C, Gaborit P, KimJ L, Sok L, Sole P, Vega G. Classification of extremal and s-extremal binary self-dual codes of length 38. IEEE Transactions on Information Theory, 2012, 58(4): 2253-2262
https://doi.org/10.1109/TIT.2011.2177809
15 Betsumiya K, Harada M, Munemasa A. A complete classification of doubly even self-dual codes of length 40. http://arxiv.org/abs/1104.3727v4, 2013.3
16 Ruihu Li, Xueliang Li. Binary construction of quantum codes of minimum distances five and six. Discrete Mathematics, 2008, 308: 1603-1611
https://doi.org/10.1016/j.disc.2007.04.016
17 Ruihu Li, Xueliang Li. Binary construction of quantum codes of minimum distance three and four. IEEE Transactions on Information Theory, 2004, 50(6): 1331-1335
https://doi.org/10.1109/TIT.2004.828149
18 Sloane N A J. Is there a (72; 36) d= 16 self-dual code? IEEE Transactions on Information Theory, 1973, 19(2): 251
https://doi.org/10.1109/TIT.1973.1054975
19 Feulner T, Nebe G. The automorphism group of a self-dual binary [72; 36; 16] code does not contain Z7, Z3 × Z3, or D10. IEEE Transactions on Information Theory, 2012, 58(11): 6916-6924
https://doi.org/10.1109/TIT.2012.2208176
20 O’Brien E A, Willems W. On the automorphism group of a binary selfdual doubly-even [72; 36; 16] code. IEEE Transactions on Information Theory, 2011, 57(7): 4445-4451
https://doi.org/10.1109/TIT.2011.2145850
21 Daskalov R, Hristov P. New binary one-generator quasi-cyclic codes. IEEE Transactions on Information Theory, 2003, 49(11): 3001-3005
https://doi.org/10.1109/TIT.2003.819337
22 Chen E Z. New quasi-cyclic codes from simplex codes. IEEE Transactions on Information Theory, 2007, 53(3): 1193-1196
https://doi.org/10.1109/TIT.2006.890727
23 Grassl M, White G S. New codes from chains of quasi-cyclic codes. In: Proceedings of the 2005 IEEE International Symposium on Information Theory. 2005, 2095-2099
24 Lally K, Fitzpatrick P. Algebraic structure of quasicyclic codes. Discrete Applied Mathematics, 2001, 111: 157-175
https://doi.org/10.1016/S0166-218X(00)00350-4
25 Ling S, Sole P. On the algebraic structure of quasi-cyclic codes I: finite fields. 2005 IEEE International Sympium on Information Theory, 2001, 47(7): 2751-2759
26 Cayrel P L, Chabot C, Necer A. Quasi-cyclic codes as codes over rings of matrices. Finite Fields and Their Applications, 2010, 16: 100-115
https://doi.org/10.1016/j.ffa.2010.01.001
27 Cao Y L. 1-generator quasi-cyclic codes over finite chain rings. Applicable Algebra in Engineering, Communication and Computing, 2013, 24(1): 53-72
https://doi.org/10.1007/s00200-012-0182-8
28 Cao Y L, Gao J. Constructing quasi-cyclic codes from linear algebra theory. Designs, Codes and Cryptography, 2013, 67(1): 59-75
https://doi.org/10.1007/s10623-011-9586-x
29 Calderbank A R, Rains E M, Shor P W, Sloane N J A. Quantum error correction via codes over GF(4). IEEE Transactions on Information Theory, 1998, 44: 1369-1387
https://doi.org/10.1109/18.681315
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed