Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front. Comput. Sci.    2015, Vol. 9 Issue (3) : 456-465    https://doi.org/10.1007/s11704-014-4211-6
RESEARCH ARTICLE
Irradiance regression for efficient final gathering in global illumination
Xuezhen HUANG1,Xin SUN2,Zhong REN1,*(),Xin TONG2,Baining GUO2,Kun ZHOU1
1. State Key Laboratory of Computer Aided Design and Computer Graphics, Zhejiang University, Hangzhou 310058, China
2. Microsoft Research Asia, Beijing 100029, China
 Download: PDF(653 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Photon mapping is widely used for global illumination rendering because of its high computational efficiency. But its efficiency is still limited, mainly by the intensive sampling required in final gathering, a process that is critical for removing low frequency artifacts of density estimation. In this paper, we propose a method to predict the final gathering estimation with direct density estimation, thereby achieving high quality global illumination by photon mapping with high efficiency. We first sample the irradiance of a subset of shading points by both final gathering and direct radiance estimation. Then we use the samples as a training set to predict the final gathered irradiance of other shading points through regression. Consequently, we are able to achieve about three times overall speedup compared with straightforward final gathering in global illumination computation with the same rendering quality.

Keywords global illumination      photon mapping      final gathering      radiance estimation      regression     
Corresponding Author(s): Zhong REN   
Issue Date: 18 May 2015
 Cite this article:   
Xin SUN,Zhong REN,Xin TONG, et al. Irradiance regression for efficient final gathering in global illumination[J]. Front. Comput. Sci., 2015, 9(3): 456-465.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-014-4211-6
https://academic.hep.com.cn/fcs/EN/Y2015/V9/I3/456
1 Kajiya J T. The rendering equation. SIGGRAPH Comput. Graph., 1986, 20(4): 143-150
https://doi.org/10.1145/15886.15902
2 Jensen H W. Realistic image synthesis using photon mapping. Natick, MA: A. K. Peters, Ltd., 2001
https://doi.org/10.1201/b10685
3 Dutré P, Jensen H W, Arvo J, Bala K, Bekaert P, Marschner S, Pharr M. State of the art in monte carlo global illumination. In: Proceedings of ACM SIGGRAPH 2004 Course Notes. 2004
https://doi.org/10.1145/1103900.1103905
4 Wald I, Mark W R, Günther J, Boulos S, Ize T, Hunt W, Parker S G, Shirley P. State of the art in ray tracing animated scenes. Computer Graphics Forum, 2007, 28(6): 1691-1722
https://doi.org/10.1111/j.1467-8659.2008.01313.x
5 Ritschel T, Dachsbacher C, Grosch T, Kautz J. The state of the art in interactive global illumination. Computer Graphics Forum, 2012, 31(1): 160-188
https://doi.org/10.1111/j.1467-8659.2012.02093.x
6 Lafortune E P, Willems Y D. Bi-directional path tracing. In: Proceedings of ACM SIGGRAPH. 1993, 145-153
7 Keller A. Instant radiosity. In: Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’97. 1997, 49-56
https://doi.org/10.1145/258734.258769
8 Jensen H W, Christensen N J. Photon maps in bidirectional Monte Carlo ray tracing of complex objects. Computers & Graphics, 1995, 19(2): 215-224
https://doi.org/10.1016/0097-8493(94)00145-O
9 Ward G J, Rubinstein FM, Clear R D. A ray tracing solution for diffuse interreflection. SIGGRAPH Comput. Graph., 1988, 22(4): 85-92
https://doi.org/10.1145/378456.378490
10 Ward G J, Heckbert P S. Irradiance gradients. In: Proceedings of 3rd Eurographics Workshop on Rendering. 1992, 85-98
11 K?ivánek J, Gautron P, Ward G, Jensen H W, Christensen P H, Tabellion E. Practical global illumination with irradiance caching. In: Proceedings of ACM SIGGRAPH, 2008, 60:1-60:20
https://doi.org/10.1145/1401132.1401213
12 Schwarzhaupt J, Jensen H W, Jarosz W. Practical hessian-based error control for irradiance caching. ACM Transactions on Graphics, 2012, 31(6): 193
https://doi.org/10.1145/2366145.2366212
13 Spencer B, Jones M W. Into the blue: better caustics through photon relaxation. Computer Graphics Forum, 2009, 28(2): 319-328
https://doi.org/10.1111/j.1467-8659.2009.01371.x
14 Hachisuka T, Ogaki S, Jensen HW. Progressive photon mapping. ACM Transactions on Graphics, 2008, 27(5): 130:1-130:8
15 Hachisuka T, Jarosz W, Bouchard G, Christensen P, Frisvad J R, Jakob W, Jensen HW, Kaschalk M, Knaus C, Selle A, Spencer B. State of the art in photon density estimation. In: Proceedings of ACM SIGGRAPH 2012 Courses, SIGGRAPH ’12. 2012, 6:1-6:469
https://doi.org/10.1145/2343483.2343489
16 Brouillat J, Bouville C, Loos B, Hansen C, Bouatouch K. A Bayesian monte carlo approach to global illumination. Computer Graphics Forum, 2009, 28(8): 2315-2329
https://doi.org/10.1111/j.1467-8659.2009.01537.x
17 Marques R, Bouville C, Ribardière M, Santos L P, Bouatouch K. A spherical gaussian framework for Bayesian Monte Carlo rendering of glossy surfaces. IEEE Transactions on Visualization and Computer Graphics, 2013, 19(10): 1619-1632
https://doi.org/10.1109/TVCG.2013.79
18 Sloan P P, Kautz J, Snyder J. Precomputed radiance transfer for real-time rendering in dynamic, low-frequency lighting environments. ACM Transactions on Graphics, 2002, 21(3): 527-536
https://doi.org/10.1145/566654.566612
19 Wang J, Xu K, Zhou K, Lin S, Hu S M, Guo B. Spherical harmonics scaling. The Visual Computer, 2006, 22: 713-720
https://doi.org/10.1007/s00371-006-0057-8
20 Ng R, Ramamoorthi R, Hanrahan P. All-frequency shadows using nonlinear wavelet lighting approximation. ACM Transactions on Graphics, 2003, 22(3): 376-381
https://doi.org/10.1145/882262.882280
21 Tsai Y T, Shih Z C. All-frequency precomputed radiance transfer using spherical radial basis functions and clustered tensor approximation. ACM Transactions on Graphics, 2006, 25(3): 967-976
https://doi.org/10.1145/1141911.1141981
22 Xu K, Jia Y T, Fu H, Hu S M, Tai C L. Spherical piecewise constant basis functions for all-frequency precomputed radiance transfer. IEEE Transaction on Visualization and Computer Graphics, 2008, 14(2): 454-467
https://doi.org/10.1109/TVCG.2007.70442
23 Zhang Y, Dong Z, Ma K L. Real-time volume rendering in dynamic lighting environments using precomputed photon mapping. IEEE Transaction on Visualization Computer Graphics, 2013, 19(8): 1317-1330
https://doi.org/10.1109/TVCG.2013.17
24 Zhou K, Hu Y, Lin S, Guo B, Shum H Y. Precomputed shadow fields for dynamic scenes. ACM Transactions on Graphics, 2005, 24(3): 1196-1201
https://doi.org/10.1145/1073204.1073332
25 Ren Z, Wang R, Snyder J, Zhou K, Liu X, Sun B, Sloan P P, Bao H, Peng Q, Guo B. Real-time soft shadows in dynamic scenes using spherical harmonic exponentiation. ACM Transactions on Graphics, 2006, 25(3): 977-986
https://doi.org/10.1145/1141911.1141982
26 Sun X, Zhou K, Chen Y, Lin S, Shi J, Guo B. Interactive relighting with dynamic brdfs. ACM Transactions on Graphics, 2007, 26(3): 27
https://doi.org/10.1145/1276377.1276411
27 Wang R, Tran J, Luebke D. All-frequency interactive relighting of translucent objects with single and multiple scattering. ACM Transactions on Graphics, 2005, 24(3): 1202-1207
https://doi.org/10.1145/1073204.1073333
28 Xu K, Gao Y, Li Y, Ju T, Hu S M. Real-time homogenous translucent material editing. Computer Graphics Forum, 2007, 26(3): 545-552
https://doi.org/10.1111/j.1467-8659.2007.01077.x
29 Wang R, Cheslack-Postava E, Wang R, Luebke D, Chen Q, Hua W, Peng Q, Bao H. Real-time editing and relighting of homogeneous translucent materials. The Visual Computer, 2008, 24(7-9): 565-575
https://doi.org/10.1007/s00371-008-0237-9
30 Dachsbacher C, Stamminger M. Reflective shadow maps. In: Proceedings of the 2005 Symposium on Interactive 3D Graphics and Games, I3D ’05. 2005, 203-231
31 Dachsbacher C, Stamminger M. Splatting indirect illumination. In: Proceedings of the 2006 Symposium on Interactive 3D Graphics and Games, I3D ’06. 2006, 93-100
32 Ritschel T, Grosch T, Kim M H, Seidel H P, Dachsbacher C, Kautz J. Imperfect shadow maps for efficient computation of indirect illumination. ACM Transactions on Graphics, 2008, 27(5): 129:1-129:8
33 Ritschel T, Engelhardt T, Grosch T, Seidel H P, Kautz J, Dachsbacher C. Micro-rendering for scalable, parallel final gathering. ACM Transactions on Graphics, 2009, 28(5): 132:1-132:8
34 Xu K, Cao Y P, Ma L Q, Dong Z, Wang R, Hu S M. A practical algorithm for rendering interreflections with all-frequency brdfs. ACM Transactions on Graphics, 2014, 33(1): 10:1-10:16
35 Ramamoorthi R, Hanrahan P. An efficient representation for irradiance environment maps. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’01. 2001, 497-500
https://doi.org/10.1145/383259.383317
36 Wang R, Wang R, Zhou K, Pan M, Bao H. An efficient gpu-based approach for interactive global illumination. ACM Transactions<?Pub Caret?> on Graphics, 2009, 28(3): 91:1-91:8
37 Wang J, Ren P, Gong M, Snyder J, Guo B. All-frequency rendering of dynamic, spatially-varying reflectance. ACM Transactions on Graphics, 2009, 28(5): 133:1-133:10
38 Xu K, Sun W L, Dong Z, Zhao D Y, Wu R D, Hu S M. Anisotropic spherical gaussians. ACM Transactions on Graphics, 2013, 32(6): 209:1-209:11
39 Ren P, Wang J, Gong M, Lin S, Tong X, Guo B. Global illumination with radiance regression functions. ACM Transactions on Graphics, 2013, 32(4): 130:1-130:12
40 Roweis S T, Saul L K. Nonlinear dimensionality reduction by locally linear embedding. Science, 2000, 290(5500): 2323-2326
https://doi.org/10.1126/science.290.5500.2323
[1] Supplementary Material-Highlights in 3-page ppt
Download
[1] Han Yao HUANG, Kyung Tae KIM, Hee Yong YOUN. Determining node duty cycle using Q-learning and linear regression for WSN[J]. Front. Comput. Sci., 2021, 15(1): 151101-.
[2] Lei CHEN, Kai SHAO, Xianzhong LONG, Lingsheng WANG. Multi-task regression learning for survival analysis via prior information guided transductive matrix completion[J]. Front. Comput. Sci., 2020, 14(5): 145312-.
[3] Jin LI, Quan CHEN, Jingwen LENG, Weinan ZHANG, Minyi GUO. Probabilistic robust regression with adaptive weights–a case study on face recognition[J]. Front. Comput. Sci., 2020, 14(5): 145314-.
[4] Shaocheng GUO, Songcan CHEN, Qing TIAN. Ordinal factorization machine with hierarchical sparsity[J]. Front. Comput. Sci., 2020, 14(1): 67-83.
[5] Ning CHEN, Jun ZHU, Jianfei CHEN, Ting CHEN. Dropout training for SVMs with data augmentation[J]. Front. Comput. Sci., 2018, 12(4): 694-713.
[6] Xiang FENG, Wanggen WAN, Richard Yi Da XU, Haoyu CHEN, Pengfei LI, J. Alfredo SÁNCHEZ. A perceptual quality metric for 3D triangle meshes based on spatial pooling[J]. Front. Comput. Sci., 2018, 12(4): 798-812.
[7] Wai-Ki CHING, Ho-Yin LEUNG, Zhenyu WU, Hao JIANG. Modeling default risk via a hidden Markov model of multiple sequences[J]. Front Comput Sci Chin, 2010, 4(2): 187-195.
[8] Dongling ZHANG, Yong SHI, Yingjie TIAN, Meihong ZHU. A class of classification and regression methods by multiobjective programming[J]. Front Comput Sci Chin, 2009, 3(2): 192-204.
[9] Réean Plamondon, Moussa Djioua, Xiaolin Li. Extraction of delta-lognormal parameters from handwriting strokes[J]. Front. Comput. Sci., 2007, 1(1): 106-113.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed