Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front. Comput. Sci.    2015, Vol. 9 Issue (4) : 636-642    https://doi.org/10.1007/s11704-015-3162-x
RESEARCH ARTICLE
Basic theorem as representation of heterogeneous concept lattices
Jozef PÓCS1,2,*(),Jana PÓCSOVÁ3
1. Palacký University Olomouc, Department of Algebra and Geometry, Olomouc 779 00, Czech Republic
2. Mathematical Institute, Slovak Academy of Sciences, Košice 040 01, Slovakia
3. Technical University of Košice, BERG Faculty, Institute of Control and Informatization of Production Processes, Košice 043 84, Slovakia
 Download: PDF(278 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We propose a method for representing heterogeneous concept lattices as classical concept lattices. Particularly, we describe a transformation of heterogeneous formal context into a binary one, such that corresponding concept lattices will be isomorphic. We prove the correctness of this transformation by the basic theorem for heterogeneous as well as classical concept lattices.

Keywords basic theorem      heterogeneous concept lattice      representation     
Corresponding Author(s): Jozef PÓCS   
Just Accepted Date: 31 December 2014   Issue Date: 07 September 2015
 Cite this article:   
Jozef PÓCS,Jana PÓCSOVÁ. Basic theorem as representation of heterogeneous concept lattices[J]. Front. Comput. Sci., 2015, 9(4): 636-642.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-015-3162-x
https://academic.hep.com.cn/fcs/EN/Y2015/V9/I4/636
1 Belohlávek R. Lattices generated by binary fuzzy relations. Tatra Mountains Mathematical Publications, 1999, 16: 11―19
2 Belohlávek R. Lattices of fixed points of fuzzy galois connections. Mathematical Logic Quarterly, 2001, 47(1): 111―116
https://doi.org/10.1002/1521-3870(200101)47:1<111::AID-MALQ111>3.0.CO;2-A
3 Krajci S. Cluster based efficient generation of fuzzy concepts. Neural Network World, 2003, 13(5): 521&horbar;530
4 Krajci S. A generalized concept lattice. Logic Journal of IGPL, 2005, 13(5): 543&horbar;550
https://doi.org/10.1093/jigpal/jzi045
5 Krajci S. The basic theorem on generalized concept lattice. In: Proceedings of the CLA 2004 International Workshop on Concept Lattices and their Applications. 2004, 25&horbar;33
6 Krajci S. A categorical view at generalized concept lattices. Kybernetika 2007, 43(2): 255&horbar;264
7 Medina J, Ojeda-Aciego M, Ruiz-Calvi?o J. Formal concept analysis via multi-adjoint concept lattices. Fuzzy Sets and Systems, 2009, 160: 130&horbar;144
https://doi.org/10.1016/j.fss.2008.05.004
8 Medina J, Ojeda-Aciego M. Multi-adjoint t-concept lattices. Information Sciences, 2012, 180(5): 712&horbar;725
https://doi.org/10.1016/j.ins.2009.11.018
9 Medina J, Ojeda-Aciego M. On multi-adjoint concept lattices based on heterogeneous conjunctors. Fuzzy Sets and Systems, 2012, 208: 95&horbar;110
https://doi.org/10.1016/j.fss.2012.02.008
10 Belohlávek R. What is a fuzzy concept lattice? Lecture Notes in Artificial Intelligence, 2011, 6743: 19&horbar;26
https://doi.org/10.1007/978-3-642-21881-1_4
11 Belohlávek R, Vychodil V. Formal concept analysis and linguistic hedges. International Journal of General Systems, 2012, 41(5): 503&horbar;532
https://doi.org/10.1080/03081079.2012.685936
12 Ben Yahia S, Jaoua A. Discovering knowledge from fuzzy concept lattice. In: A. Kandel, M. Last, and H. Bunke, eds. Data Mining and Computational Intelligence, Physica-Verlag, 2001, 167&horbar;190
https://doi.org/10.1007/978-3-7908-1825-3_7
13 Butka P. Use of FCA in the ontology extraction step for the improvement of the semantic information retrieval. In: Proceedings of the SOFSEM 2006: Theory and Practice of Computer Science, Prague. 2006, 74&horbar;82
14 Butka P, Sarnovsky M, Bednar P. One approach to combination of FCA-based local conceptual models for text analysis grid-based approach. In: Proceedings of the 6th International Conference SAMI. 2008, 131&horbar;135
https://doi.org/10.1109/sami.2008.4469150
15 Jaoua A, Elloumi S. Galois connection, formal concepts and galois lattice in real relations: application in a real classifier. The Journal of Systems and Software, 2002, 60: 149&horbar;163
https://doi.org/10.1016/S0164-1212(01)00087-5
16 Kang X, Li D, Wang S, Qu K. Formal concept analysis based on fuzzy granularity base for different granulations. Fuzzy Sets and Systems, 2012, 203: 33&horbar;48
https://doi.org/10.1016/j.fss.2012.03.003
17 Kang X, Li D, Wang S, Qu K. Rough set model based on formal concept analysis. Information Sciences, 2013, 222: 611&horbar;625
https://doi.org/10.1016/j.ins.2012.07.052
18 Li Q, Guo L. Formal query systems on contexts and a representation of algebraic lattices. Information Sciences, 2013, 239: 72&horbar;84
https://doi.org/10.1016/j.ins.2013.03.032
19 Sarnovsky M, Butka P, Paralic J. Grid-based support for different text mining tasks. Acta Polytechnica Hungarica, 2009, 6(4): 5&horbar;27
20 Sarnovsky M, Butka P. Cloud computing as a platform for distributed data analysis. In: Proceedings of the 7th Workshop on Intelligent and Knowledge Oriented Technologies. 2012, 177&horbar;180
21 Singh P K, Kumar C A. A method for reduction of fuzzy relation in fuzzy formal context. Mathematical Modelling and Scientific Computation, Communications in Computer and Information Science, 2012, 283: 343&horbar;350
https://doi.org/10.1007/978-3-642-28926-2_37
22 Singh P K, Kumar C A. A method for decomposition of fuzzy formal context. Procedia Engineering, 2012, 38: 1852&horbar;1857
https://doi.org/10.1016/j.proeng.2012.06.228
23 Singh P K, Kumar C A. Interval-valued fuzzy graph representation of concept lattices. In: Proceedings of the 12th International Conference on Intelligent Systems Design and Applications. 2012, 604&horbar;609
https://doi.org/10.1109/isda.2012.6416606
24 Song X, Wang X, Zhang W. Axiomatic approaches of fuzzy concept operators. In: Proceedings of the 2012 International Conference on Machine Learning and Cybernetics. 2012, 249&horbar;254
https://doi.org/10.1109/ICMLC.2012.6358920
25 Pócs J. Note on generating fuzzy concept lattices via galois connections. Information Sciences, 2012, 185(1): 128&horbar;136
https://doi.org/10.1016/j.ins.2011.09.021
26 Pócs J. On possible generalization of fuzzy concept lattices using dually isomorphic retracts. Information Sciences, 2012, 210: 89&horbar;98
https://doi.org/10.1016/j.ins.2012.05.004
27 Antoni L, Krajci S, Krídlo O, Macek B, Pisková L. Relationship between two FCA approaches on heterogeneous formal contexts. In: Proceedings of the 9th International Conference on Concept Lattices and Their Applications. 2012, 93&horbar;102
28 Antoni L, Krajci S, Krídlo O, Macek B, Pisková L. On heterogeneous formal contexts. Fuzzy Sets and Systems, 2014, 234: 72&horbar;84
https://doi.org/10.1016/j.fss.2013.04.008
29 Ganter B, Wille R. Formal Concept Analysis. Berlin: Mathematical Foundations. Springer, 1999
https://doi.org/10.1007/978-3-642-59830-2
30 Nourine L, Raynaud O. A fast incremental algorithm for building lattices. Journal of Experimental and Theoretical Artificial Intelligence, 2002, 14: 217&horbar;227
https://doi.org/10.1080/09528130210164152
31 Butka P, Pócs J. Generalization of one-sided concept lattices. Computing and Informatics, 2013, 32(2): 355&horbar;370
[1] Supplementary Material-Highlights in 3-page ppt
Download
[1] Zhiyong YU, Xiangping ZHENG, Fangwan HUANG, Wenzhong GUO, Lin SUN, Zhiwen YU. A framework based on sparse representation model for time series prediction in smart city[J]. Front. Comput. Sci., 2021, 15(1): 151305-.
[2] Xingxing HAO, Jing LIU, Yutong ZHANG, Gustaph SANGA. Mathematical model and simulated annealing algorithm for Chinese high school timetabling problems under the new curriculum innovation[J]. Front. Comput. Sci., 2021, 15(1): 151309-.
[3] Yu ZHU, Zhonglin YE, Haixing ZHAO, Ke ZHANG. Text-enhanced network representation learning[J]. Front. Comput. Sci., 2020, 14(6): 146322-.
[4] Fangfang LIU, Yan SHEN, Tienan ZHANG, Honghao GAO. Entity-related paths modeling for knowledge base completion[J]. Front. Comput. Sci., 2020, 14(5): 145311-.
[5] Ling SHEN, Richang HONG, Yanbin HAO. Advance on large scale near-duplicate video retrieval[J]. Front. Comput. Sci., 2020, 14(5): 145702-.
[6] Xuejun WANG, Feilong CAO, Wenjian WANG. Adaptive sparse and dense hybrid representation with nonconvex optimization[J]. Front. Comput. Sci., 2020, 14(4): 144306-.
[7] Ratha PECH, Dong HAO, Hong CHENG, Tao ZHOU. Enhancing subspace clustering based on dynamic prediction[J]. Front. Comput. Sci., 2019, 13(4): 802-812.
[8] Haijun WANG, Hongjuan GE. Visual tracking using discriminative representation with 2 regularization[J]. Front. Comput. Sci., 2019, 13(1): 199-211.
[9] Xueming WANG, Zechao LI, Jinhui TANG. Visual understanding by mining social media: recent advances and challenges[J]. Front. Comput. Sci., 2018, 12(3): 406-422.
[10] Junge ZHANG, Kaiqi HUANG, Tieniu TAN, Zhaoxiang ZHANG. Local structured representation for generic object detection[J]. Front. Comput. Sci., 2017, 11(4): 632-648.
[11] Hongpeng YIN,Jinxing LI,Yi CHAI,Simon X. YANG. A survey on distributed compressed sensing: theory and applications[J]. Front. Comput. Sci., 2014, 8(6): 893-904.
[12] Yunping ZHENG,Mudar SAREM. A novel binary image representation algorithm by using NAM and coordinate encoding procedure and its application to area calculation[J]. Front. Comput. Sci., 2014, 8(5): 763-772.
[13] Zhisong PAN,Zhantao DENG,Yibing WANG,Yanyan ZHANG. Dimensionality reduction via kernel sparse representation[J]. Front. Comput. Sci., 2014, 8(5): 807-815.
[14] Jiliang TANG, Xufei WANG, Huiji GAO, Xia HU, Huan LIU. Enriching short text representation in microblog for clustering[J]. Front Comput Sci, 2012, 6(1): 88-101.
[15] Yunping ZHENG, Mudar SAREM. A fast algorithm for computing moments of gray images based on NAM and extended shading approach[J]. Front Comput Sci Chin, 2011, 5(1): 57-65.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed