Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front. Comput. Sci.    2016, Vol. 10 Issue (4) : 673-688    https://doi.org/10.1007/s11704-015-4457-7
RESEARCH ARTICLE
A three-way incremental-learning algorithm for radar emitter identification
Xin XU1,*(),Wei WANG2,Jianhong WANG1
1. Science and Technology on Information System Engineering Laboratory, Nanjing Research Institute of Electronic Engineering (NRIEE), Nanjing 210007, China
2. State Key Laboratory for Novel Software and Technology, Nanjing University, Nanjing 210093, China
 Download: PDF(669 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Radar emitter identification has been recognized as an indispensable task for electronic intelligence system. With the increasingly accumulated radar emitter intelligence and information, one key issue is to rebuild the radar emitter classifier efficiently with the newly-arrived information. Although existing incremental learning algorithms are superior in saving significant computational cost by incremental learning on continuously increasing training samples, they are not adaptable enough yet when emitter types, features and samples are increasing dramatically. For instance, the intra-pulse characters of emitter signals could be further extracted and thus expand the feature dimension. The same goes for the radar emitter type dimension when samples from new radar emitter types are gathered. In addition, existing incremental classifiers are still problematic in terms of computational cost, sensitivity to data input order, and difficulty in multiemitter type identification. To address the above problems, we bring forward a three-way incremental learning algorithm (TILA) for radar emitter identification which is adaptable for the increase in emitter features, types and samples.

Keywords radar emitter identification      incremental learning      classification      data mining     
Corresponding Author(s): Xin XU   
Just Accepted Date: 31 August 2015   Online First Date: 06 April 2016    Issue Date: 06 July 2016
 Cite this article:   
Xin XU,Wei WANG,Jianhong WANG. A three-way incremental-learning algorithm for radar emitter identification[J]. Front. Comput. Sci., 2016, 10(4): 673-688.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-015-4457-7
https://academic.hep.com.cn/fcs/EN/Y2016/V10/I4/673
1 Zhou Z H, Chen Z Q. Hybrid decision tree. Knowledge-Based Systems, 2002, 15(8): 515–528
https://doi.org/10.1016/S0950-7051(02)00038-2
2 Domingos P, Hulten G. A general framework for mining massive data streams. Journal of Computational and Graphical Statistics, 2003, 12(14): 945–949
https://doi.org/10.1198/1061860032544
3 Masud M M, Chen Q, Khan L, Aggarwal C C, Gao J, Han J, Srivastava A, Oza N C. Classification and adaptive novel class detection of feature-evolving data streams. IEEE Transaction on Knowledge and Data Engineering, 2013, 25(7): 1484–1497
https://doi.org/10.1109/TKDE.2012.109
4 Bordes A, Bottou L. The huller: a simple and efficient online SVM. Lecture Notes in Computer Science, 2005, 3720: 505–512
https://doi.org/10.1007/11564096_48
5 Barak O, Rigotti M. A simple derivation of a bound on the rerceptron margin using singular value decomposition. Neural Computation, 2011, 23(8): 1935–1943
https://doi.org/10.1162/NECO_a_00152
6 Zhang T. Solving large scale linear prediction problems using stochastic gradient descent algorithms. In: Proceedings of the 21st International Conferenc on Machine Learning. 2004, 919–926
https://doi.org/10.1145/1015330.1015332
7 Shalev-Shwartz S, Singer Y, Srebro N, Cotter A. Pegasos: primal estimated sub-gradient solver for SVM. Mathematical Programming, 2011, 127(1): 3–30
https://doi.org/10.1007/s10107-010-0420-4
8 Li Y, Long P M. The relaxed online maximum margin algorithm. Machine Learning, 2002, 46: 1–3
https://doi.org/10.1023/A:1012435301888
9 Hulten G, Spencer L, Domingos P. Mining time-changing data streams. In: Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2001, 97–106
https://doi.org/10.1145/502512.502529
10 Carpenter G A, Grossberg S, Markuzon N, Reynolds J H, Rosen D B. Fuzzy ARTMAP: a neural network architecture for incremental supervised learning of analog multidimensional maps. IEEE Transactions on Neural Networks, 1991, 3(5): 698–713
https://doi.org/10.1109/72.159059
11 Polikar R, Udpa L, Udpa S S, Honavar V. Learn++: an incremental learning algorithm for supervised neural networks. IEEE Transactions on Systems, Man, and Cybernetics, 2001, 31(4): 497–508
https://doi.org/10.1109/5326.983933
12 Sheng W, Banta L E. Parameter incremental learning algorithm for neural networks. IEEE Transactions on Neural Networks, 2006, 17(6): 1424–1438
https://doi.org/10.1109/TNN.2006.880581
13 Katakis I, Tsoumakas G, Vlahavas I. Dynamic feature space and incremental feature selection for the classification of textual data streams. Knowledge Discovery from Data Streams, 2006: 107–116
14 Wenerstrom B, Giraud-Carrier C. Temporal data mining in dynamic feature spaces. In: Proceedings of the 13th IEEE International Conference on Data Mining. 2006, 1141–1145
https://doi.org/10.1109/icdm.2006.157
15 Masud M M, Gao J, Khan L, Han J, Thuraisingham B. Integrating novel class detection with classification for concept-drifting data streams. Lecture Notes in Computer Science, 2009, 5782: 79–94
https://doi.org/10.1007/978-3-642-04174-7_6
16 Masud M M, Chen Q, Jing G, Latifur K, Jiawei H, Bhavani T. Classification and novel class detection of data streams in a dynamic feature space. Machine Learning and Knowledge Discovery in Databases, 2010, 6322: 337–352
https://doi.org/10.1007/978-3-642-15883-4_22
17 Spinosa E J, de Leon F, de Carvalho A P, Gama J. Cluster-based novel concept detection in data streams applied to intrusion detection in computer networks. In: Proceedings of the 2008 ACM Symposium on Applied Computing. 2008: 976–980
https://doi.org/10.1145/1363686.1363912
18 Sminu N R, Jemimah S. Feature based data stream classification (FBDC) and novel class detection. International Journal of Engineering Research and Applications (IJERA), 2014, 25(7): 28–32
19 Zhu B, Jin d W. Radar emitter signal recognition based on EMD and neural network. Journal of Computers, 2012, 7(6): 1413–1420
20 Yang Z, Wu Z, Yin Z, Quan T, Sun H. Hybrid radar emitter recognition based on rough k-means classifier and relevance vector machine. Sensors, 2013, 13(1): 848–864
https://doi.org/10.3390/s130100848
21 Liu H J, Liu Z, Jiang W L, Zhou Y Y. Incremental learning approach based on vector neural network for emitter identification. IET Signal Processing, 2010, 4(1): 45–54
https://doi.org/10.1049/iet-spr.2008.0240
22 Kauppia J P, Martikainenb K, Ruotsalainena U. Hierarchical classifica tion of dynamically varying radar pulse repetition interval modulation patterns. Neural Networks, 2010, 23(10): 1226–1237
https://doi.org/10.1016/j.neunet.2010.06.008
23 Xu X, Wang W. An incremental gray relational analysis algorithm for multiclass classification and outlier detection. International Journal of Pattern Recognition and Artificial Intelligence, 2012, 26(6): 1250011
https://doi.org/10.1142/S0218001412500115
24 Montazer G A, Khoshniat H, Fathi V. Improvement of RBF neural networks using Fuzzy-OSD algorithm in an online radar pulse classification system. Applied Soft Computing, 2013, 13(9): 3831–3838
https://doi.org/10.1016/j.asoc.2013.04.021
25 Tang K, Lin M, Minku F L, Yao X. Selective negative correlation learning approach to incremental learning. Neurocomputing, 2009, 72(13–15): 2796–2805
https://doi.org/10.1016/j.neucom.2008.09.022
26 Sudo A, Sato A, Hasegawa O. Associative memory for online learning in noisy environments using self-organizing incremental neural network. IEEE Transactions on Neural Networks, 2009, 20(6): 964–972
https://doi.org/10.1109/TNN.2009.2014374
27 Chao S, Wong F. An incremental decision tree learning methodology regarding attributes in medical data mining. In: Proceedings of IEEE International Conference on Machine Learning and Cybernetics. 2009, 3: 1694–1699
28 Bottou L. Large-scale machine learning with stochastic gradient descent. In: Procceedings of OMPSTAT. 2010, 177–186
https://doi.org/10.1007/978-3-7908-2604-3_16
29 Bottou L, Bousquet O. The tradeoffs of large scale learning. Advances in Neural Information Processing Systems, 2008, 20: 161–168
30 Sculley D. Combined regression and ranking. In: Proceedings of the 16th ACM SIGKDD Conference. 2010, 979–988
https://doi.org/10.1145/1835804.1835928
31 Wu X, Yu K, Ding W, Wang H, Zhu X. Online feature selection with streaming features. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 2013, 35(5): 1178–1192
https://doi.org/10.1109/TPAMI.2012.197
32 Ditzler G, Rosen G, Polikar R. Incremental learning of new classes from unbalanced data. In: Proceedings of International Joint Conference on Neural Networks (IJCNN). 2013, 33–42
https://doi.org/10.1109/ijcnn.2013.6706770
33 Filzmoser P. A multivariate outlier detection method. In: Proceedings of the 7th International Conference on Computer Data Analysis and Modeling. 2004, 18–22
[1] FCS-0673-14457-XX_suppl_1 Download
[1] Genan DAI, Xiaoyang HU, Youming GE, Zhiqing NING, Yubao LIU. Attention based simplified deep residual network for citywide crowd flows prediction[J]. Front. Comput. Sci., 2021, 15(2): 152317-.
[2] Yunyun WANG, Jiao HAN, Yating SHEN, Hui XUE. Pointwise manifold regularization for semi-supervised learning[J]. Front. Comput. Sci., 2021, 15(1): 151303-.
[3] Panthadeep BHATTACHARJEE, Pinaki MITRA. A survey of density based clustering algorithms[J]. Front. Comput. Sci., 2021, 15(1): 151308-.
[4] Qianchen YU, Zhiwen YU, Zhu WANG, Xiaofeng WANG, Yongzhi WANG. Estimating posterior inference quality of the relational infinite latent feature model for overlapping community detection[J]. Front. Comput. Sci., 2020, 14(6): 146323-.
[5] Yuling MA, Chaoran CUI, Jun YU, Jie GUO, Gongping YANG, Yilong YIN. Multi-task MIML learning for pre-course student performance prediction[J]. Front. Comput. Sci., 2020, 14(5): 145313-.
[6] Parnika PARANJAPE, Meera DHABU, Parag DESHPANDE. A novel classifier for multivariate instance using graph class signatures[J]. Front. Comput. Sci., 2020, 14(4): 144307-.
[7] Muhammad Aminur RAHAMAN, Mahmood JASIM, Md. Haider ALI, Md. HASANUZZAMAN. Bangla language modeling algorithm for automatic recognition of hand-sign-spelled Bangla sign language[J]. Front. Comput. Sci., 2020, 14(3): 143302-.
[8] Xibin DONG, Zhiwen YU, Wenming CAO, Yifan SHI, Qianli MA. A survey on ensemble learning[J]. Front. Comput. Sci., 2020, 14(2): 241-258.
[9] Guijuan ZHANG, Yang LIU, Xiaoning JIN. A survey of autoencoder-based recommender systems[J]. Front. Comput. Sci., 2020, 14(2): 430-450.
[10] Lu LIU, Shang WANG. Meta-path-based outlier detection in heterogeneous information network[J]. Front. Comput. Sci., 2020, 14(2): 388-403.
[11] Hui XUE, Haiming XU, Xiaohong CHEN, Yunyun WANG. A primal perspective for indefinite kernel SVM problem[J]. Front. Comput. Sci., 2020, 14(2): 349-363.
[12] Xu-Ying LIU, Sheng-Tao WANG, Min-Ling ZHANG. Transfer synthetic over-sampling for class-imbalance learning with limited minority class data[J]. Front. Comput. Sci., 2019, 13(5): 996-1009.
[13] Satoshi MIYAZAWA, Xuan SONG, Tianqi XIA, Ryosuke SHIBASAKI, Hodaka KANEDA. Integrating GPS trajectory and topics from Twitter stream for human mobility estimation[J]. Front. Comput. Sci., 2019, 13(3): 460-470.
[14] Rizwan Ahmed KHAN, Alexandre MEYER, Hubert KONIK, Saida BOUAKAZ. Saliency-based framework for facial expression recognition[J]. Front. Comput. Sci., 2019, 13(1): 183-198.
[15] Changlong WANG, Zhiyong FENG, Xiaowang ZHANG, Xin WANG, Guozheng RAO, Daoxun FU. ComR: a combined OWL reasoner for ontology classification[J]. Front. Comput. Sci., 2019, 13(1): 139-156.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed