Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front. Comput. Sci.    2017, Vol. 11 Issue (2) : 175-191    https://doi.org/10.1007/s11704-016-5520-8
REVIEW ARTICLE
The role of prior in image based 3D modeling: a survey
Hao ZHU,Yongming NIE,Tao YUE,Xun CAO()
Lab for Computational Imaging Technology and Engineering, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
 Download: PDF(950 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The prior knowledge is the significant supplement to image-based 3D modeling algorithms for refining the fragile consistency-based stereo. In this paper, we review the image-based 3D modeling problem according to prior categories, i.e., classical priors and specific priors. The classical priors including smoothness, silhouette and illumination are well studied for improving the accuracy and robustness of the 3D reconstruction. In recent years, various specific priors which take advantage of Manhattan rule, geometry template and trained category features have been proposed to enhance the modeling performance. The advantages and limitations of both kinds of priors are discussed and evaluated in the paper. Finally, we discuss the trend and challenges of the prior studies in the future.

Keywords prior information      consistency-based stereo      smoothness      illumination      silhouette      specific prior     
Corresponding Author(s): Xun CAO   
Just Accepted Date: 18 July 2016   Online First Date: 17 October 2016    Issue Date: 06 April 2017
 Cite this article:   
Hao ZHU,Yongming NIE,Tao YUE, et al. The role of prior in image based 3D modeling: a survey[J]. Front. Comput. Sci., 2017, 11(2): 175-191.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-016-5520-8
https://academic.hep.com.cn/fcs/EN/Y2017/V11/I2/175
1 Dyer C R. Volumetric scene reconstruction from multiple views. Foundations of Image Understanding, 2001, 628: 469–489
https://doi.org/10.1007/978-1-4615-1529-6_16
2 Slabaugh G, Schafer R, Malzbender T, Culbertson B. A survey of methods for volumetric scene reconstruction from photographs. In: Proceedings of the Joint IEEE TCVG and Eurographics Workshop in Stony Brook. 2010, 81–100
3 Seitz S M, Curless B, Diebel J, Scharstein D, Szeliski R. A comparison and evaluation of multi-view stereo reconstruction algorithms. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2006, 519–528
https://doi.org/10.1109/cvpr.2006.19
4 Brenner C. Building reconstruction from images and laser scanning. International Journal of Applied Earth Observation and Geoinformation, 2005, 6(3): 187–198
https://doi.org/10.1016/j.jag.2004.10.006
5 Newcombe R A, Izadi S, Hilliges O, Molyneaux D, Kim D, Davison A J, Kohi P, Shotton J, Hodges S, Fitzgibbon A. KinectFusion: realtime dense surface mapping and tracking. In: Proceedings of the IEEE International Symposium on Mixed and Augmented Reality. 2011, 127–136
https://doi.org/10.1109/ismar.2011.6092378
6 Izadi S, Kim D, Hilliges O, Molyneaux D, Newcombe R, Kohli P, Shotton J, Hodges S, Freeman D, Davison A, Fitzgibbon A. Kinect- Fusion: real-time 3D reconstruction and interaction using a moving depth camera. In: Proceedings of the ACM Symposium on User Interface Software and Technology. 2011, 559–568
7 Scharstein D, Szeliski R, Hirschmüller H. Stereo. , 2015
8 Huang T S, Netravali A N. Motion and structure from feature correspondences: a review. Proceedings of the IEEE, 1994, 82(2): 252–268
https://doi.org/10.1109/5.265351
9 Oliensis J. A critique of structure-from-motion algorithms. Computer Vision and Image Understanding, 2000, 80(2): 172–214
https://doi.org/10.1006/cviu.2000.0869
10 Lowe D G. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 2004, 60(2): 91–110
https://doi.org/10.1023/B:VISI.0000029664.99615.94
11 Durrant-Whyte H, Bailey T. Simultaneous localization and mapping. IEEE Robotics & Automation Magazine, 2006, 13(2): 99–110
https://doi.org/10.1109/MRA.2006.1638022
12 Williams B, Klein G, Reid I. Real-time SLAMrelocalisation. In: Proceedings of the 11th IEEE International Conference on Computer Vision. 2007, 1–8
13 Newcombe R A, Lovegrove S J, Davison A J. DTAM: dense tracking and mapping in real-time. In: Proceedings of the IEEE International Conference on Computer Vision. 2011, 2320–2327
https://doi.org/10.1109/iccv.2011.6126513
14 Tan W, Liu H M, Dong Z L, Zhang G F, Bao H J. Robust monocular SLAM in dynamic environments. In: Proceedings of the IEEE International Symposium on Mixed and Augmented Reality. 2013, 209–218
15 Zhang R, Tsai P S, Cryer J E, Shah M. Shape-from-shading: a survey. IEEE Transactions on Pattern Analysis andMachine Intelligence, 1999, 21(8): 690–706
16 Woodham R J. Photometric method for determining surface orientation from multiple images. Optical Engineering, 1980, 19(1): 1–22
https://doi.org/10.1117/12.7972479
17 Bartoli A, Gerard Y, Chadebecq F, Collins T, Pizarro D. The visual hull concept for silhouette-based image understanding. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(10): 2099–2118
https://doi.org/10.1109/TPAMI.2015.2392759
18 Laurentini A. The visual hull concept for silhouette-based image understanding. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1994, 16(2): 150–162
https://doi.org/10.1109/34.273735
19 Lee W, Woo W, Boyer E. Silhouette segmentation in multiple views. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(7): 1429–1441
https://doi.org/10.1109/TPAMI.2010.196
20 Tao H, Sawhney H S, Kumar R. A global matching framework for stereo computation. In: Proceedings of the 8th IEEE International Conference on Computer Vision. 2001, 532–539
https://doi.org/10.1109/iccv.2001.937562
21 Bleyer M, Gelautz M. A layered stereo algorithm using image segmentation and global visibility constraints. In: Proceedings of the IEEE International Conference on Image Processing. 2004, 2997–3000
https://doi.org/10.1109/icip.2004.1421743
22 Hong L, Chen G. Segment-based stereo matching using graph cuts. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2004, 74–81
https://doi.org/10.1109/cvpr.2004.1315016
23 Klaus A, Sormann M, Karner K. Segment-based stereo matching using belief propagation and a self-adapting dissimilarity measure. In: Proceedings of the 18th IEEE International Conference on Pattern Recognition. 2006, 15–18
https://doi.org/10.1109/icpr.2006.1033
24 Yang Q X, Wang L, Yang R G, Stewénius H, Nistér D. Stereo matching with color-weighted correlation, hierarchical belief propagation, and occlusion handling. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(3): 492–504
https://doi.org/10.1109/TPAMI.2008.99
25 Scharstein D, Szeliski R. A taxonomy and evaluation of dense twoframe stereo correspondence algorithms. International Journal of Computer Vision, 2002, 47(1–3): 7–42
https://doi.org/10.1023/A:1014573219977
26 Furukawa Y, Ponce J. Accurate, dense, and robust multiview stereopsis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(8): 1362–1376
https://doi.org/10.1109/TPAMI.2009.161
27 Beeler T, Bickel B, Beardsley P, Sumner B, Gross M. High-quality single-shot capture of facial geometry. ACM Transactions on Graphics, 2010, 29(4): 40
https://doi.org/10.1145/1778765.1778777
28 Kolev K, Klodt M, Brox T, Esedoglu S, Cremers D. Continuous global optimization in multiview 3D reconstruction. International Journal of Computer Vision, 2009, 84(1): 80–96
https://doi.org/10.1007/s11263-009-0233-1
29 Liu Y B, Cao X, Dai Q H, Xu W L. Continuous depth estimation for multi-view stereo. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2009, 2121–2128
30 Yao Y, Zhu H, Nie Y M, Ji X L, Cao X. Revised depth map estimation for multi-view stereo. In: Proceedings of the IEEE International Conference on 3D Imaging. 2014, 1–7
https://doi.org/10.1109/ic3d.2014.7032588
31 Li G, Zucker S W. Surface geometric constraints for stereo in belief propagation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2006, 2355–2362
32 Woodford O, Torr P, Reid I, Reid I, Fitzgibbon A. Global stereo reconstruction under second-order smoothness priors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(12): 2115–2128
https://doi.org/10.1109/TPAMI.2009.131
33 Han X, Xu C Y, Prince J L. A topology preserving level set method for geometric deformable models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(6): 755–768
https://doi.org/10.1109/TPAMI.2003.1201824
34 Esteban C H, Schmitt F. Silhouette and stereo fusion for 3D object modeling. Computer Vision and Image Understanding, 2004, 96(3): 367–392
https://doi.org/10.1016/j.cviu.2004.03.016
35 Sorkine O, Cohen-Or D, Lipman Y, Alexa M, Rössl C, Seidel H P. Laplacian surface editing. In: Proceedings of the ACM SIGGRAPH symposium on Geometry processing. 2004, 175–184
https://doi.org/10.1145/1057432.1057456
36 Zeng G, Paris S, Quan L, Sillion F. Progressive surface reconstruction from images using a local prior. In: Proceedings of the 10th IEEE International Conference on Computer Vision. 2005, 1230–1237
https://doi.org/10.1109/iccv.2005.196
37 Tasdizen T, Whitaker R. Higher-order nonlinear priors for surface reconstruction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(7): 878–891
https://doi.org/10.1109/TPAMI.2004.31
38 Li Y, Sun J, Tang C K, Shum H Y. Lazy snapping. ACM Transactions on Graphics, 2004, 23(3): 303–308
https://doi.org/10.1145/1015706.1015719
39 Kolmogorov V, Criminisi A, Blake A, Cross G. Probabilistic fusion of stereo with color and contrast for bilayer segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(9): 1480–1492
https://doi.org/10.1109/TPAMI.2006.193
40 Franco J S, Boyer E. Efficient polyhedral modeling from silhouettes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(3): 414–427
https://doi.org/10.1109/TPAMI.2008.104
41 Matusik W, Buehler C, Raskar R, Gortler S, McMillan L. Imagebased visual hulls. In: Proceedings of the 27th ACM Annual Conference on Computer Graphics and Interactive Techniques. 2000, 369–374
42 Miller G, Hilton A. Exact view-dependent visual hulls. In: Proceedings of the IEEE International Conference on Pattern Recognition. 2006, 107–111
https://doi.org/10.1109/icpr.2006.515
43 Vogiatzis G, Torr P H S, Cipolla R. Multi-view stereo via volumetric graph-cuts. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2005, 391–398
https://doi.org/10.1109/cvpr.2005.238
44 Furukawa Y, Ponce J. Carved visual hulls for image-based modeling. International Journal of Computer Vision, 2009, 81(1): 53–67
https://doi.org/10.1007/s11263-008-0134-8
45 Zheng Z Y, Ma L Z, Li Z, Chen Z H. Reconstruction of shape and reflectance properties based on visual hull. In: Proceedings of the ACM Computer Graphics International Conference. 2009, 29–38
https://doi.org/10.1145/1629739.1629743
46 Sinha S N, Pollefeys M. Multi-view reconstruction using photoconsistency and exact silhouette constraints: a maximum-flow formulation. In: Proceedings of the 10th IEEE International Conference on Computer Vision. 2005, 349–356
47 Gall J, Stoll C, De Aguiar E, Theobalt C, Rosenhahn B, Seidel H. Motion capture using joint skeleton tracking and surface estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2009, 1746–1753
https://doi.org/10.1109/cvpr.2009.5206755
48 Vlasic D, Baran I, Matusik W, Popović J. Articulated mesh animation from multi-view silhouettes. ACM Transactions on Graphics, 2008, 27(3): 97
https://doi.org/10.1145/1360612.1360696
49 Straka M, Hauswiesner S, Rüther M, Bischof H. Simultaneous shape and pose adaption of articulated models using linear optimization. In: Proceedings of European Conference on Computer Vision. 2012, 724–737
https://doi.org/10.1007/978-3-642-33718-5_52
50 Liu Y, Gall J, Stoll C, Dai Q, Seidel H, Theobalt C. Markerless motion capture of multiple characters using multiview image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(11): 2720–2735
https://doi.org/10.1109/TPAMI.2013.47
51 Horn B K P. Shape from shading: A method for obtaining the shape of a smooth opaque object from one view. Technical Report. 1970
52 Durou J D, Falcone M, Sagona M. Numerical methods for shapefrom- shading: a new survey with benchmarks. Computer Vision and Image Understanding, 2008, 109(1): 22–43
https://doi.org/10.1016/j.cviu.2007.09.003
53 Herbort S, Wohler C. An introduction to image-based 3D surface reconstruction and a survey of photometric stereo methods. 3D Research, 2011, 2(3): 1–17
54 Leclerc Y G, Bobick A F. The direct computation of height from shading. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 1991, 552–558
https://doi.org/10.1109/cvpr.1991.139752
55 Fua P, Leclerc Y G. Object-centered surface reconstruction: combining multi-image stereo and shading. International Journal of Computer Vision, 1995, 16(1): 35–56
https://doi.org/10.1007/BF01428192
56 Jin H, Cremers D, Yezzi A J, Soatto S. Shedding light on stereoscopic segmentation. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2004, 36–42
57 Jin H, Yezz A, Soatto S. Stereoscopic shading: integrating multiframe shape cues in a variational framework. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2000, 169–176
https://doi.org/10.1109/cvpr.2000.855816
58 Jin H, Yezzi A J, Soatto S. Region-based segmentation on evolving surfaces with application to 3D reconstruction of shape and piecewise constant radiance. In: Proceedings of European Conference on Computer Vision. 2004, 114–125
https://doi.org/10.1007/978-3-540-24671-8_9
59 Yu T L, Xu N, Ahuja N. Recovering shape and reflectance model of non-lambertian objects from multiple views. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2004, 226–233
60 Yu T L, Xu N, Ahuja N. Shape and view independent reflectance map from multiple views. International Journal of Computer Vision, 2007, 73(2): 123–138
https://doi.org/10.1007/s11263-006-9373-8
61 Yoon K J, Prados E, Sturm P. Joint estimation of shape and reflectance using multiple images with known illumination conditions. International Journal of Computer Vision, 2010, 86(2–3): 192–210
https://doi.org/10.1007/s11263-009-0222-4
62 Wu C L, Wilburn B, Matsushita Y, Theobalt C. High-quality shape from multi-view stereo and shading under general illumination. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2011, 969–976
https://doi.org/10.1109/cvpr.2011.5995388
63 Han Y, Lee J Y, Kweon I S. High quality shape from a single RGBD image under uncalibrated natural illumination. In: Proceedings of the IEEE International Conference on Computer Vision. 2013, 1617–1624
64 Zhang L, Curless B, Hertzmann A, Seitz S M. Shape and motion under varying illumination: unifying structure from motion, photometric stereo, and multiview stereo. In: Proceedings of the IEEE International Conference on Computer Vision. 2003, 618–625
https://doi.org/10.1109/ICCV.2003.1238405
65 Basri R, Jacobs D, Kemelmacher I. Photometric stereo with general, unknown lighting. International Journal of Computer Vision, 2007, 72(3): 239–257
https://doi.org/10.1007/s11263-006-8815-7
66 Hernndez C, Vogiatzis G, Brostow G J, Stenger B, Cipolla R. Nonrigid photometric stereo with colored lights. In: Proceedings of the 11th IEEE International Conference on Computer Vision. 2007, 1–8
67 Brostow G J, Hernández C, Vogiatzis G, Stenger B, Cipolla R. Video normals from colored lights. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(10): 2104–2114
https://doi.org/10.1109/TPAMI.2011.37
68 Roth J, Tong Y, Liu X. Unconstrained 3D face reconstruction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015, 2606–2615
https://doi.org/10.1109/cvpr.2015.7298876
69 Debevec P. The light stages and their applications to photoreal digital actors. SIGGRAPH Asia Technical Briefs, 2012, 2
70 Ghosh A, Fyffe G, Tunwattanapong B, Busch J, Yu X M, Debevec P. Multiview face capture using polarized spherical gradient illumination. ACM Transactions on Graphics, 2011, 30(6): 129
https://doi.org/10.1145/2070781.2024163
71 Liu Y B, Dai Q H, Xu W L. A point-cloud-based multiview stereo algorithm for free-viewpoint video. IEEE Transactions on Visualization and Computer Graphics, 2010, 16(3): 407–418
https://doi.org/10.1109/TVCG.2009.88
72 Wu C L, Liu Y B, Dai Q H, Bennett W. Fusing multiview and photometric stereo for 3D reconstruction under uncalibrated illumination. IEEE Transactions on Visualization and Computer Graphics, 2011, 17(8): 1082–1095
https://doi.org/10.1109/TVCG.2010.224
73 Coughlan J M, Yuille A L. Manhattan world: compass direction from a single image by Bayesian inference. In: Proceedings of the 7th IEEE International Conference on Computer Vision. 1999, 941–947
https://doi.org/10.1109/ICCV.1999.790349
74 Furukawa Y, Curless B, Seitz S M, Szeliski R. Manhattan-world stereo. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2009, 1422–1429
https://doi.org/10.1109/cvpr.2009.5206867
75 Vanegas C A, Aliaga D G, Beneš B. Building reconstruction using manhattan-world grammars. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2010, 358–365
https://doi.org/10.1109/cvpr.2010.5540190
76 Zeisl B, Zach C, Pollefeys M. Stereo reconstruction of building interiors with a vertical structure prior. In: Proceedings of the IEEE International Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission. 2011, 366–373
https://doi.org/10.1109/3dimpvt.2011.53
77 Sun J, Li Y, Kang S B, Shum H Y. Symmetric stereo matching for occlusion handling. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2005, 399–406
78 Zhang G, Jia J, Wong T T, Bao H. Consistent depth maps recovery from a video sequence. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(6): 974–988
https://doi.org/10.1109/TPAMI.2009.52
79 Yang Q X, Wang L, Yang R G, Stewénius H, Nistér D. Stereo matching with color-weighted correlation, hierarchical belief propagation, and occlusion handling. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(3): 492–504
https://doi.org/10.1109/TPAMI.2008.99
80 Sinha S N, Steedly D, Szeliski R. Piecewise planar stereo for imagebased rendering. In: Proceedings of the IEEE International Conference on Computer Vision. 2009, 1881–1888
81 Gallup D, Frahm J M, Pollefeys M. Piecewise planar and nonplanar stereo for urban scene reconstruction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2010, 1418–1425
82 Kim H, Xiao H, Max N. Piecewise planar scene reconstruction and optimization for multi-view stereo. In: Proceedings of Asian Conference on Computer Vision. 2013, 191–204
https://doi.org/10.1007/978-3-642-37447-0_15
83 Mathias M, Martinovic A, Weissenberg J, Van Gool L. Procedural 3D building reconstruction using shape grammars and detectors. In: Proceedings of the IEEE International Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission. 2011, 304–311
84 Zebedin L, Bauer J, Karner K, Bischof H. Fusion of feature-and areabased information for urban buildings modeling from aerial imagery. In: Proceedings of European Conference on Computer Vision. 2008, 873–886
85 Wu C C, Agarwal S, Curless B, Seitz S M. Schematic surface reconstruction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2012, 1498–1505
86 Lafarge F, Keriven R, Brédif M, Hoang-Hiep V. A hybrid multiview stereo algorithm for modeling urban scenes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1): 5–17
https://doi.org/10.1109/TPAMI.2012.84
87 Lafarge F, Keriven R, Brédif M, Hoang-Hiep V. Hybrid multi-view reconstruction by jump-diffusion. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2010, 350–357
https://doi.org/10.1109/cvpr.2010.5540193
88 Mahabadi R K, Hane C, Pollefeys M. Segment based 3D object shape priors. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015, 2838–2846
https://doi.org/10.1109/cvpr.2015.7298901
89 Widanagamaachchi W N, Dharmaratne A T. 3D face reconstruction from 2D images. In: Proceedings of the IEEE Digital Image Computing: Techniques and Applications. 2008, 365–371
https://doi.org/10.1109/dicta.2008.83
90 Amin S H, Gillies D. Analysis of 3D face reconstruction. In: Proceedings of the 14th IEEE International Conference on Image Analysis and Processing. 2007, 413–418
https://doi.org/10.1109/iciap.2007.4362813
91 Hassner T, Basri R. Example based 3D reconstruction from single 2D images. In: Proceedings of the IEEE Computer Vision and Pattern Recognition Workshop. 2006, 15
https://doi.org/10.1109/cvprw.2006.76
92 Cheng C M, Lai S H. An integrated approach to 3D face model reconstruction from video. In: Proceedings of the IEEE ICCV Workshop on Recognition, Analysis, and Tracking of Faces and Gestures in Real-Time Systems. 2001, 16–22
https://doi.org/10.1109/RATFG.2001.938905
93 Fidaleo D, Medioni G. Model-assisted 3D face reconstruction from video. In: Proceedings of the International Workshop on Analysis and Modeling of Faces and Gestures. 2007, 124–138
https://doi.org/10.1007/978-3-540-75690-3_10
94 Tytgat D, Lievens S, Six E. A prior-based approach to 3D face reconstruction using depth images. Advances in Depth Image Analysis and Applications, 2013, 32–41
https://doi.org/10.1007/978-3-642-40303-3_4
95 Baumberger C, Reyes M, Constantinescu M, Olariu R, Aguiar E, Oliveira-Santos T. 3D face reconstruction from video using 3D morphable model and silhouette. In: Proceedings of the 27th IEEE SIBGRAPI Conference on Graphics, Patterns and Images. 2014, 1–8
https://doi.org/10.1109/sibgrapi.2014.12
96 Kemelmacher-Shlizerman I, Seitz S M. Face reconstruction in the wild. In: Proceedings of the IEEE International Conference on Computer Vision. 2011, 1746–1753
https://doi.org/10.1109/iccv.2011.6126439
97 Bérard P, Bradley D, Nitti M, Beeler T, Gross M. High-quality capture of eyes. ACM Transactions on Graphics, 2014, 33(6): 1–12
https://doi.org/10.1145/2661229.2661285
98 Bermano A, Beeler T, Kozlov Y, Bradley D, Bickel B, Gross M. Detailed spatio-temporal reconstruction of eyelids. ACM Transactions on Graphics, 2015, 34(4): 44
https://doi.org/10.1145/2766924
99 Hu L W, Ma C Y, Luo L J, Li H. Robust hair capture using simulated examples. ACM Transactions on Graphics, 2014, 33(4): 126
https://doi.org/10.1145/2601097.2601194
100 Luo L, Li H, Rusinkiewicz S. Structure-aware hair capture. ACM Transactions on Graphics, 2013, 32(4): 76
https://doi.org/10.1145/2461912.2462026
101 Xiao J, Fang T, Zhao P, Lhuillier M, Quan L. Image-based street-side city modeling. ACM Transactions on Graphics, 2009, 28(5): 89–97
https://doi.org/10.1145/1618452.1618460
102 Nan L, Sharf A, Zhang H, Cohen-Or D, Chen B. SmartBoxes for interactive urban reconstruction. ACM Transactions on Graphics, 2010, 29(4): 157–166
https://doi.org/10.1145/1778765.1778830
103 Tan P, Zeng G, Wang J D, Kang S B, Quan L. Image-based tree modeling. ACM Transactions on Graphics, 2007, 26(3): 87
https://doi.org/10.1145/1276377.1276486
104 Quan L, Tan P, Zeng G, Yuan L, Wang J D, Kang S B. Image-based plant modeling. ACM Transactions on Graphics, 2006, 25(3): 599–604
https://doi.org/10.1145/1141911.1141929
105 Livny Y, Yan F, Olson M, Chen B, Zhang H, El-Sana J. Automatic reconstruction of tree skeletal structures from point clouds. ACM Transactions on Graphics, 2010, 29(6): 151
https://doi.org/10.1145/1882261.1866177
106 Blanz V, Mehl A, Vetter T, Seidel H. A statistical method for robust 3D surface reconstruction from sparse data. In: Proceedings of the IEEE International Symposium on 3D Data Processing, Visualization and Transmission. 2004, 293–300
107 Bao S Y, Savarese S. Semantic structure from motion. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2011, 2025–2032
https://doi.org/10.1109/cvpr.2011.5995462
108 Bao S Y, Chandraker M, Lin Y, Savarese S. Dense object reconstruction with semantic priors. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2013, 1264–1271
https://doi.org/10.1109/cvpr.2013.167
109 Dame A, Prisacariu V A, Ren C Y, Reid I. Dense reconstruction using 3D object shape priors. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2013, 1288–1295
https://doi.org/10.1109/cvpr.2013.170
110 Hane C, Savinov N, Pollefeys M. Class specific 3D object shape priors using surface normals. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2014, 652–659
https://doi.org/10.1109/cvpr.2014.89
111 Kazhdan M, Bolitho M, Hoppe H. Poisson surface reconstruction. In: Proceedings of Eurographics Symposium on Geometry Processing. 2006, 61–70
112 Zhang Q S, Song X, Shao X W, Zhao H J, Shibasaki R. When 3D reconstruction meets ubiquitous RGB-D images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2014, 700–707
https://doi.org/10.1109/cvpr.2014.95
113 Mehrdad V, Ebrahimnezhad H. 3D object retrieval based on histogram of local orientation using one-shot score support vector machine. Frontiers of Computer Science, 2015, 9(6): 990–1005
https://doi.org/10.1007/s11704-015-4291-y
114 Hane C, Ladicky L, Pollefeys M. Direction matters: depth estimation with a surface normal classifier. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015, 381–389
https://doi.org/10.1109/cvpr.2015.7298635
115 Park M G, Yoon K J. Leveraging stereo matching with learning-based confidence measures. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015, 101–109
116 Guney F, Geiger A. Displets: resolving stereo ambiguities using object knowledge. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015, 4165–4175
https://doi.org/10.1109/cvpr.2015.7299044
117 Tanskanen P, Kolev K, Meier L, Camposeco F, Saurer O, Pollefeys M. Live metric 3D reconstruction on mobile phones. In: Proceedings of the IEEE International Conference on Computer Vision. 2013, 65–72
https://doi.org/10.1109/iccv.2013.15
118 Kolev K, Tanskanen P, Speciale P, Pollefeyset M. Turning mobile phones into 3D scanners. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2014, 3946–3953
https://doi.org/10.1109/cvpr.2014.504
[1] Yunyun WANG, Jiao HAN, Yating SHEN, Hui XUE. Pointwise manifold regularization for semi-supervised learning[J]. Front. Comput. Sci., 2021, 15(1): 151303-.
[2] Liang SUN, Hongwei GE, Wenjing KANG. Non-negative matrix factorization based modeling and training algorithm for multi-label learning[J]. Front. Comput. Sci., 2019, 13(6): 1243-1254.
[3] Ahmad ALI,Abdul JALIL,Jianwei NIU,Xiaoke ZHAO,Saima RATHORE,Javed AHMED,Muhammad AKSAM IFTIKHAR. Visual object tracking—classical and contemporary approaches[J]. Front. Comput. Sci., 2016, 10(1): 167-188.
[4] Xuezhen HUANG,Xin SUN,Zhong REN,Xin TONG,Baining GUO,Kun ZHOU. Irradiance regression for efficient final gathering in global illumination[J]. Front. Comput. Sci., 2015, 9(3): 456-465.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed