Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front. Comput. Sci.    2017, Vol. 11 Issue (2) : 230-242    https://doi.org/10.1007/s11704-016-6050-0
RESEARCH ARTICLE
Robust visual tracking based on scale invariance and deep learning
Nan REN1,Junping DU1(),Suguo ZHU1,Linghui LI1,Dan FAN1,JangMyung LEE2
1. Beijing Key Laboratory of Intelligent Telecommunication Software and Multimedia, School of Computer Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
2. Department of Electronics Engineering, Pusan National University, Busan 46241, Korea
 Download: PDF(916 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Visual tracking is a popular research area in computer vision, which is very difficult to actualize because of challenges such as changes in scale and illumination, rotation, fast motion, and occlusion. Consequently, the focus in this research area is to make tracking algorithms adapt to these changes, so as to implement stable and accurate visual tracking. This paper proposes a visual tracking algorithm that integrates the scale invariance of SURF feature with deep learning to enhance the tracking robustness when the size of the object to be tracked changes significantly. Particle filter is used for motion estimation. The confidence of each particle is computed via a deep neural network, and the result of particle filter is verified and corrected by mean shift because of its computational efficiency and insensitivity to external interference. Both qualitative and quantitative evaluations on challenging benchmark sequences demonstrate that the proposed tracking algorithm performs favorably against several state-of-the-art methods throughout the challenging factors in visual tracking, especially for scale variation.

Keywords visual tracking      SURF      mean shift      particle filter      neural network     
Corresponding Author(s): Junping DU   
Just Accepted Date: 03 November 2016   Issue Date: 06 April 2017
 Cite this article:   
Nan REN,Junping DU,Suguo ZHU, et al. Robust visual tracking based on scale invariance and deep learning[J]. Front. Comput. Sci., 2017, 11(2): 230-242.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-016-6050-0
https://academic.hep.com.cn/fcs/EN/Y2017/V11/I2/230
1 Jia Y M. Robust control with decoupling performance for steering and traction of 4WS vehicles under velocity-varying motion. IEEE Transactions on Control Systems Technology, 2000, 8(3): 554–569
https://doi.org/10.1109/87.845885
2 Jia Y M. Alternative proofs for improved LMI representations for the analysis and the design of continuous-time systems with polytopic type uncertainty: a predictive approach. IEEE Transactions on Automatic Control, 2003, 48(8): 1413–1416
https://doi.org/10.1109/TAC.2003.815033
3 Jia Y M. General solution to diagonal model matching control of multiple-output-delay systems and its applications in adaptive scheme. Progress in Natural Science, 2009, 19(1): 79–90
https://doi.org/10.1016/j.pnsc.2008.05.019
4 Wang N Y, Yeung D Y. Learning a deep compact image representation for visual tracking. In: Proceedings of Advances in Neural Information Processing Systems. 2013, 809–817
5 Vincent P, Larochelle H, Lajoie I, Bengio Y, Manzagol P A. Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. The Journal ofMachine Learning Research, 2010, 11: 3371–3408
6 Smeulders A W M, Chu D M, Rita C, Simone C, Afshin D, Mubarak S. Visual tracking: an experimental survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(7): 1442–1468
https://doi.org/10.1109/TPAMI.2013.230
7 Ali A, Jalil A, Niu J, Zhao X K, Rathore S, Ahmed J, Iftikhar M A. Visual object tracking—classical and contemporary approaches. Frontiers of Computer Science, 2016, 10(1): 167–188
https://doi.org/10.1007/s11704-015-4246-3
8 Wu Y, Lim J, Yang M H. Online object tracking: a benchmark. In: proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2013, 9(4): 2411–2418
https://doi.org/10.1109/cvpr.2013.312
9 Wu Y, Lim J, Yang M H. Object tracking benchmark. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1834–1848
https://doi.org/10.1109/TPAMI.2014.2388226
10 Li X, Dick A, Shen C H, Anton V D H, Wang H Z. Incremental learning of 3D-DCT compact representations for robust visual tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(4): 863–881
https://doi.org/10.1109/TPAMI.2012.166
11 Gao J, Ling H B, Hu W M, Xing J L. Transfer learning based visual tracking with Gaussian processes regression. In: Proceedings of the 13th European Conference on Computer Vision. 2014, 188–203
https://doi.org/10.1007/978-3-319-10578-9_13
12 Henriques J F, Caseiro R, Martins P, Batista J. High-speed tracking with kernelized correlation filters. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3): 583–596
https://doi.org/10.1109/TPAMI.2014.2345390
13 Li X, Shen C H, Dick A, Zhang Z M, Zhuang Y. Online metricweighted linear representations for robust visual tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(5): 931–950
https://doi.org/10.1109/TPAMI.2015.2469276
14 Zhou Y, Bai X, Liu W Y, Latecki L J. Similarity fusion for visual tracking. International Journal of Computer Vision, 2016, 118(3): 337–363
https://doi.org/10.1007/s11263-015-0879-9
15 Zhong W, Lu H C, Yang M H. Robust object tracking via sparsitybased collaborative model. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2012, 1838–1845
16 Hare S, Saffari A, Torr P H S. Struck: structured output tracking with kernels. In: proceedings of IEEE Conference on Computer Vision. 2011, 263–270
https://doi.org/10.1109/iccv.2011.6126251
17 Li X, Dick A, Shen C H, Zhang Z F, Hengel A V D, Wang H Z. Visual tracking with spatio-temporal Dempster-Shafer information fusion. IEEE Transactions on Image Processing, 2013, 22(8): 3028–3040
https://doi.org/10.1109/TIP.2013.2253478
18 Gao C X, Chen F F, Yu J G, Huang R, Sang N. Robust visual tracking using exemplar-based detectors. IEEE Transactions on Circuits and Systems for Video Technology, 2015
19 Li K, He F Z, Chen X. Real-time object tracking via compressive feature selection. Frontiers of Computer Science, 2016, 10(4): 689–701
https://doi.org/10.1007/s11704-016-5106-5
20 Zhang B C, Perina A, Li Z G, Murino V, Liu J Z, Ji R R. Bounding multiple gaussians uncertainty with application to object tracking. International Journal of Computer Vision, 2016, 118(3): 364–379
https://doi.org/10.1007/s11263-016-0880-y
21 Zhu Y Y, Zhang C Q, Zhou D Y, Wang X G, Bai X, Liu W Y. Traffic sign detection and recognition using fully convolutional network guided proposals. Neurocomputing, 2016, 214: 758–766
https://doi.org/10.1016/j.neucom.2016.07.009
22 Li H X, Li Y, Porikli F. DeepTrack: learning discriminative feature representations by convolutional neural networks for visual tracking. IEEE Transactions on Image Processing, 2015, 25(4): 1834–1848
https://doi.org/10.1109/TIP.2015.2510583
23 Hong S H, You T G, Kwak S H, Han B H. Online tracking by learning discriminative saliency map with convolutional neural network. 2015, arXiv:1502.06796v1
24 Wang L, Liu T, Wang G, Chan K L, Yang Q X. Video tracking using learned hierarchical features. IEEE Transactions on Image Processing, 2015, 24(4): 1424–1435
https://doi.org/10.1109/TIP.2015.2403231
25 Ma C, Huang J B, Yang X K, Yang M H. Hierarchical convolutional features for visual tracking. In: proceedings of IEEE International Conference on Computer Vision. 2015, 3074–3082
https://doi.org/10.1109/iccv.2015.352
26 Wang N Y, Li S Y, Gupta A, Yeung D Y. Transferring rich feature hierarchies for robust visual tracking. 2015, arXiv:1501.04587v2
27 Zhang K H, Liu Q S, Wu Y, Yang M H. Robust visual tracking via convolutional networks without training. IEEE Transactions on Image Processing, 2016, 25(4): 1779–1792
https://doi.org/10.1109/tip.2016.2531283
28 Held D, Thrun S, Savarese S. Learning to track at 100 fps with deep regression networks. 2016, arXiv:1604.01802
29 Wang L J, Ouyang W L, Wang X G, Lu H C. STCT: sequentially training convolutional networks for visual tracking. In: proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2016
https://doi.org/10.1109/cvpr.2016.153
30 Zhai M Y, Roshtkhari M J, Mori G. Deep Learning of appearance models for online object tracking. 2016, arXiv:1607.02568
31 Arulampalam M S, Maskell S, Gordon N, Clapp T. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Transactions on Signal Processing, 2002, 50(2): 174–188
https://doi.org/10.1109/78.978374
32 Comaniciu D, Ramesh V, Meer P. Kernel-based object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(5): 564–577
https://doi.org/10.1109/TPAMI.2003.1195991
33 Torralba A, Fergus R, Freeman W T. 80 million tiny images: a large data set for nonparametric object and scene recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(11): 1958–1970
https://doi.org/10.1109/TPAMI.2008.128
34 Zhang J M, Ma S G, Sclaroff S. MEEM: robust tracking via multiple experts using entropy minimization. In: proceedings of European Conference on Computer Vision. 2014, 188–203
https://doi.org/10.1007/978-3-319-10599-4_13
35 He S F, Yang Q X, Lau R W H, Wang J, Yang M H. Visual tracking via locality sensitive histograms. In: proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2013, 2427–2434
https://doi.org/10.1109/cvpr.2013.314
36 Jia X, Lu H C, Yang M H. Visual tracking via adaptive structural local sparse appearance model. In: proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2012, 1822–1829
37 Kwon J, Lee K M. Visual tracking decomposition. In: proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2010, 1269–1276
https://doi.org/10.1109/cvpr.2010.5539821
38 Ross D A, Lim J W, Lin R S, Yang M H. Incremental learning for robust visual tracking. International Journal of Computer Vision, 2008, 77(1): 125–141
https://doi.org/10.1007/s11263-007-0075-7
39 Dinh T B, Vo N, Medioni G. Context tracker: exploring supporters and distracters in unconstrained environments. In: proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2011, 1177–1184
https://doi.org/10.1109/cvpr.2011.5995733
[1] Huiying ZHANG, Yu ZHANG, Xin GENG. Practical age estimation using deep label distribution learning[J]. Front. Comput. Sci., 2021, 15(3): 153318-.
[2] Yu HU, Tiezheng NIE, Derong SHEN, Yue KOU, Ge YU. An integrated pipeline model for biomedical entity alignment[J]. Front. Comput. Sci., 2021, 15(3): 153321-.
[3] Yixuan CAO, Dian CHEN, Zhengqi XU, Hongwei LI, Ping LUO. Nested relation extraction with iterative neural network[J]. Front. Comput. Sci., 2021, 15(3): 153323-.
[4] Wangli HAO, Ian Max ANDOLINA, Wei WANG, Zhaoxiang ZHANG. Biologically inspired visual computing: the state of the art[J]. Front. Comput. Sci., 2021, 15(1): 151304-.
[5] Qianchen YU, Zhiwen YU, Zhu WANG, Xiaofeng WANG, Yongzhi WANG. Estimating posterior inference quality of the relational infinite latent feature model for overlapping community detection[J]. Front. Comput. Sci., 2020, 14(6): 146323-.
[6] Fan LIU, Xiaomin JI, Gang HU, Jing GAO. A computer aided design method for car form and its application based on shape parameters[J]. Front. Comput. Sci., 2020, 14(6): 146703-.
[7] Chune LI, Yongyi MAO, Richong ZHANG, Jinpeng HUAI. A revisit to MacKay algorithm and its application to deep network compression[J]. Front. Comput. Sci., 2020, 14(4): 144304-.
[8] Yongzhong HE, Endalew Elsabeth ALEM, Wei WANG. Hybritus: a password strength checker by ensemble learning from the query feedbacks of websites[J]. Front. Comput. Sci., 2020, 14(3): 143802-.
[9] Yiteng PAN, Fazhi HE, Haiping YU. A correlative denoising autoencoder to model social influence for top-N recommender system[J]. Front. Comput. Sci., 2020, 14(3): 143301-.
[10] Zhenyang SU, Jing LI, Jun CHANG, Bo DU, Yafu XIAO. Real-time visual tracking using complementary kernel support correlation filters[J]. Front. Comput. Sci., 2020, 14(2): 417-429.
[11] Jiaqing FAN, Huihui SONG, Kaihua ZHANG, Qingshan LIU, Fei YAN, Wei LIAN. Real-time manifold regularized context-aware correlation tracking[J]. Front. Comput. Sci., 2020, 14(2): 334-348.
[12] Zhiqian ZHANG, Chenliang LI, Zhiyong WU, Aixin SUN, Dengpan YE, Xiangyang LUO. NEXT: a neural network framework for next POI recommendation[J]. Front. Comput. Sci., 2020, 14(2): 314-333.
[13] Lydia LAZIB, Bing QIN, Yanyan ZHAO, Weinan ZHANG, Ting LIU. A syntactic path-based hybrid neural network for negation scope detection[J]. Front. Comput. Sci., 2020, 14(1): 84-94.
[14] Jia HE, Fuzhen ZHUANG, Yanchi LIU, Qing HE, Fen LIN. Bayesian dual neural networks for recommendation[J]. Front. Comput. Sci., 2019, 13(6): 1255-1265.
[15] Weinan ZHANG, Ting LIU, Qingyu YIN, Yu ZHANG. Neural recovery machine for Chinese dropped pronoun[J]. Front. Comput. Sci., 2019, 13(5): 1023-1033.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed