|
|
Remote heart rate measurement using low-cost RGB face video: a technical literature review |
Philipp V. ROUAST1, Marc T. P. ADAM2, Raymond CHIONG2( ), David CORNFORTH2, Ewa LUX1 |
1. Institute of Information Systems and Marketing, Karlsruhe Institute of Technology, Karlsruhe 76133, Germany 2. School of Electrical Engineering and Computing, The University of Newcastle, Callaghan NSW 2308, Australia |
|
|
Abstract Remote photoplethysmography (rPPG) allows remote measurement of the heart rate using low-cost RGB imaging equipment. In this study, we review the development of the field of rPPG since its emergence in 2008. We also classify existing rPPG approaches and derive a framework that provides an overview of modular steps. Based on this framework, practitioners can use our classification to design algorithms for an rPPG approach that suits their specific needs. Researchers can use the reviewed and classified algorithms as a starting point to improve particular features of an rPPG algorithm.
|
Keywords
affective computing
heart rate measurement
remote
non-contact
camera-based
photoplethysmography
|
Corresponding Author(s):
Raymond CHIONG
|
Just Accepted Date: 23 August 2016
Online First Date: 20 December 2017
Issue Date: 21 September 2018
|
|
1 |
Zhang Z L, Pi Z Y, Liu B Y. Troika: a general framework for heart rate monitoring using wrist-type photoplethysmographic signals during intensive physical exercise. IEEE Transactions on Biomedical Engineering, 2015, 62(2): 522–531
https://doi.org/10.1109/TBME.2014.2359372
|
2 |
Adam M T P, Krämer J, Weinhardt C. Excitement up! Price down! Measuring emotions in dutch auctions. International Journal of Electronic Commerce, 2012, 13(2): 7–39
https://doi.org/10.2753/JEC1086-4415170201
|
3 |
Adam M T P, Krämer J, Müller M B. Auction fever! How time pressure and social competition affect bidders’ arousal and bids in retail auctions. Journal of Retailing, 2015, 91(3): 468–485
https://doi.org/10.1016/j.jretai.2015.01.003
|
4 |
Astor P J, Adam M T P, Jeřcíc P, Schaaff K, Weinhardt C. Integrating biosignals into information systems: a neurois tool for improving emotion regulation. Journal of Management Information Systems, 2013, 30(3): 247–278
https://doi.org/10.2753/MIS0742-1222300309
|
5 |
Riedl R. On the biology of technostress: literature review and research agenda. ACM SIGMIS Database, 2013, 44(1): 18–55
https://doi.org/10.1145/2436239.2436242
|
6 |
Verkruysse W, Svaasand L O, Nelson J S. Remote plethysmographic imaging using ambient light. Optics Express, 2008, 16(26): 21434–21445
https://doi.org/10.1364/OE.16.021434
|
7 |
McDuff D J, Estepp J R, Piasecki A M, Blackford E B. A survey of remote optical photoplethysmographic imaging methods. In: Proceedings of the 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 2015, 6398–6404
https://doi.org/10.1109/EMBC.2015.7319857
|
8 |
Liu H, Wang Y D, Wang L. A review of non-contact, low-cost physiological information measurement based on photoplethysmographic imaging. In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 2012, 2088–2091
|
9 |
Kranjec J, Beguš S, Geršak G, Drnovšek J. Non-contact heart rate and heart rate variability measurements: a review. Biomedical Signal Processing and Control, 2014, 13(1): 102–112
https://doi.org/10.1016/j.bspc.2014.03.004
|
10 |
Poh M Z, McDuff D J, Picard R W. Non-contact, automated cardiac pulse measurements using video imaging and blind source separation. Optics Express, 2010, 18(10): 10762–10774
https://doi.org/10.1364/OE.18.010762
|
11 |
Allen J. Photoplethysmography and its application in clinical physiological measurement. Physiological Measurement, 2007, 28(3): R1–R39
https://doi.org/10.1088/0967-3334/28/3/R01
|
12 |
Lindberg L G, Öberg P A. Optical properties of blood in motion. Optical Engineering, 1993, 32(2): 253–257
https://doi.org/10.1117/12.60688
|
13 |
Balakrishnan G, Durand F, Guttag J. Detecting pulse from head motions in video. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2013, 3430–3437
https://doi.org/10.1109/CVPR.2013.440
|
14 |
Starr I, Rawson A J, Schroeder H A, Joseph N R. Studies on the estimation of cardiac ouptut in man, and of abnormalities in cardiac function, from the heart’s recoil and the blood’s impacts; the ballistocardiogram. American Journal of Physiology, 1939, 127(1): 1–28
|
15 |
Hertzman A B, Spealman C R. Observations on the finger volume pulse recorded photoelectrically. American Journal of Physiology, 1937, 119(2): 334–335
|
16 |
Poh M Z, McDuff D J, Picard R W. Advancements in noncontact, multiparameter physiological measurements using a webcam. IEEE Transactions on Biomedical Engineering, 2011, 58(1): 7–11
https://doi.org/10.1109/TBME.2010.2086456
|
17 |
Lewandowska M, Ruminski J, Kocejko T. Measuring pulse rate with a webcam: a non-contact method for evaluating cardiac activity. In: Proceedings of the Federated Conference on Computer Science and Information Systems (FedCSIS). 2011, 405–410
|
18 |
Kwon S, Kim H, Park K S. Validation of heart rate extraction using video imaging on a built-in camera system of a smartphone. In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 2012, 2174–2177
|
19 |
Lee K Z, Hung P C, Tsai L W. Contact-free heart rate measurement using a camera. In: Proceedings of the 9th Conference on Computer and Robot Vision. 2012, 147–152
https://doi.org/10.1109/CRV.2012.27
|
20 |
Wei L, Tian Y H, Wang Y W, Ebrahimi T, Huang T. Automatic webcam-based human heart rate measurements using laplacian eigenmap. In: Proceedings of Asian Conference on Computer Vision. 2013, 281–292
https://doi.org/10.1007/978-3-642-37444-9_22
|
21 |
Wu H Y, Rubinstein M, Shih E, Guttag J V, Durand F, Freeman W T. Eulerian video magnification for revealing subtle changes in the world. ACM Transactions on Graphics, 2012, 31(4): 1–8
https://doi.org/10.1145/2185520.2185561
|
22 |
Wu H Y. Eulerian video processing and medical applications. Dissertation for the Master Degree. Cambridge, MA: Massachusetts Institute of Technology, 2012
|
23 |
Shan L, Yu M H. Video-based heart rate measurement using head motion tracking and ICA. In: Proceedings of the 6th International Congress on Image and Signal Processing. 2013, 160–164
https://doi.org/10.1109/CISP.2013.6743978
|
24 |
Irani R, Nasrollahi K, Moeslund T B. Improved pulse detection from head motions using DCT. In: Proceedings of the 9th International Conference on Computer Vision Theory and Applications. 2014, 118–124
|
25 |
De Haan G, Jeanne V. Robust pulse rate from chrominance-based rPPG. IEEE Transactions on Biomedical Engineering, 2013, 60(10): 2878–2886
https://doi.org/10.1109/TBME.2013.2266196
|
26 |
De Haan G, Van Leest A. Improved motion robustness of remote-PPG by using the blood volume pulse signature. Physiological Measurement, 2014, 35(9): 1913–1926
https://doi.org/10.1088/0967-3334/35/9/1913
|
27 |
Lempe G, Zaunseder S, Wirthgen T, Zipser S, Malberg H. ROI selection for remote photoplethysmography. In: Meinzer H P, Deserno M T, Handels H, et al, eds. Bildverarbeitung für die Medizin 2013. Berlin: Springer, 2013, 99–103
https://doi.org/10.1007/978-3-642-36480-8_19
|
28 |
Datcu D, Cidota M, Lukosch S, Rothkrantz L. Noncontact automatic heart rate analysis in visible spectrum by specific face regions. In: Proceedings of the 14th International Conference on Computer Systems and Technologies. 2013, 120–127
https://doi.org/10.1145/2516775.2516805
|
29 |
Li X B, Chen J, Zhao G Y, Pietikäinen M. Remote heart rate measurement from face videos under realistic situations. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2014, 4264–4271
https://doi.org/10.1109/CVPR.2014.543
|
30 |
McDuff D, Gontarek S, Picard R W. Remote detection of photoplethysmographic systolic and diastolic peaks using a digital camera. IEEE Transactions on Biomedical Engineering, 2014, 61(12): 2948–2954
https://doi.org/10.1109/TBME.2014.2340991
|
31 |
Kumar M, Veeraraghavan A, Sabharwal A. DistancePPG: robust noncontact vital signs monitoring using a camera. Biomedical Optics Express, 2015, 6(5): 1565–1588
https://doi.org/10.1364/BOE.6.001565
|
32 |
Tasli H E, Gudi A, Den Uyl M. Remote PPG based vital sign measurement using adaptive facial regions. In: Proceedings of IEEE International Conference on Image Processing. 2014, 1410–1414
https://doi.org/10.1109/ICIP.2014.7025282
|
33 |
Feng L T, Po L M, Xu X Y, Li Y M. Motion artifacts suppression for remote imaging photoplethysmography. In: Proceedings of the 19th International Conference on Digital Signal Processing. 2014, 18–23
https://doi.org/10.1109/ICDSP.2014.6900813
|
34 |
Feng L T, Po L M, Xu X Y, Li Y M, Ma R Y. Motion-resistant remote imaging photoplethysmography based on the optical properties of skin. IEEE Transactions on Circuits and Systems for Video Technology, 2015, 25(5): 879–891
https://doi.org/10.1109/TCSVT.2014.2364415
|
35 |
Wang W J, Stuijk S, De Haan G. Exploiting spatial redundancy of image sensor for motion robust rPPG. IEEE Transactions on Biomedical Engineering, 2015, 62(2): 415–425
https://doi.org/10.1109/TBME.2014.2356291
|
36 |
McDuff D, Gontarek S, Picard R W. Improvements in remote cardiopulmonary measurement using a five band digital camera. IEEE Transactions on Biomedical Engineering, 2014, 61(10): 2593–2601
https://doi.org/10.1109/TBME.2014.2323695
|
37 |
Chwyl B, Chung A G, Deglint J, Wong A, Claus i D A. Remote heart rate measurement through broadband video via stochastic bayesian estimation. Vision Letters, 2015, 1(1): 5
https://doi.org/10.15353/vsnl.v1i1.43
|
38 |
Monkaresi H, Calvo R A, Yan H. A machine learning approach to improve contactless heart rate monitoring using a webcam. IEEE Journal of Biomedical and Health Informatics, 2014, 18(4): 1153–1160
https://doi.org/10.1109/JBHI.2013.2291900
|
39 |
Hsu Y, Lin Y L, Hsu W. Learning-based heart rate detection from remote photoplethysmography features. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing. 2014, 4433–4437
https://doi.org/10.1109/ICASSP.2014.6854440
|
40 |
Tran D N, Lee H, Kim C. A robust real time system for remote heart rate measurement via a camera. In: Proceedings of IEEE International Conference on Multimedia and Expo. 2015, 1–6
|
41 |
Li M C, Lin Y H. A real-time non-contact pulse rate detector based on smartphone. In: Proceedings of International Symposium on Next- Generation Electronics. 2015, 1–3
https://doi.org/10.1109/ISNE.2015.7132025
|
42 |
Yu Y P, Kwan B H, Lim C L, Wong S L, Raveendran P. Video-based heart rate measurement using short-time fourier transform. In: Proceedings of International Symposium on Intelligent Signal Processing and Communication Systems. 2013, 704–707
https://doi.org/10.1109/ISPACS.2013.6704640
|
43 |
Holton B D, Mannapperuma K, Lesniewski P J, Thomas J C. Signal recovery in imaging photoplethysmography. Physiological Measurement, 2013, 34(11): 1499–1511
https://doi.org/10.1088/0967-3334/34/11/1499
|
44 |
Xu S C, Sun L Y, Rohde G K. Robust efficient estimation of heart rate pulse from video. Biomedical Optics Express, 2014, 5(4): 1124–1135
https://doi.org/10.1364/BOE.5.001124
|
45 |
Feng L T, Po L M, Xu X Y, Li Y M, Cheung C-H, Cheung K-W, Yuan F. Dynamic ROI based on K-means for remote photoplethysmography. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing. 2015, 1310–1314
https://doi.org/10.1109/ICASSP.2015.7178182
|
46 |
Han B, Ivanov K, Wang L, Yan Y. Exploration of the optimal skincamera distance for facial photoplethysmographic imaging measurement using cameras of different types. In: Proceedings of the 5th EAI International Conference onWireless Mobile Communication and Healthcare. 2015, 186–189
|
47 |
Zhang K H, Zhang L, Yang M H. Real-time compressive tracking. In: Proceedings of European Conference on Computer Vision. 2012, 864–877
https://doi.org/10.1007/978-3-642-33712-3_62
|
48 |
Fernández A, Carúz J L, Usamentiaga R, Alvarez E, Casado R. Unobtrusive health monitoring system using video-based physiological information and activity measurements. In: Proceedings of International Conference on Computer, Information and Telecommunication Systems. 2012, 1–5
|
49 |
Danelljan M, Häger G, Felsberg M. Accurate scale estimation for robust visual tracking. In: Proceedings of the British Machine Vision Conference. 2014, 1–10
https://doi.org/10.5244/C.28.65
|
50 |
Hoffmann K P. Biosignale erfassen und verarbeiten. In: Kramme R, ed. Medizintechnik. Berlin: Springer, 2011, 667–688
https://doi.org/10.1007/978-3-642-16187-2_38
|
51 |
Viola P, Jones M. Rapid object detection using a boosted cascade of simple features. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2001, 511–518
https://doi.org/10.1109/CVPR.2001.990517
|
52 |
Cootes T F, Edwards G J, Taylor C J. Active appearance models. In: Proceedings of European Conference on Computer Vision. 1998, 484–498
https://doi.org/10.1007/BFb0054760
|
53 |
Asthana A, Zafeiriou S, Cheng S Y, Pantic M. Robust discriminative response map fitting with constrained local models. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2013, 3444–3451
https://doi.org/10.1109/CVPR.2013.442
|
54 |
Saragih J M, Lucey S, Cohn J F. Deformable model fitting by regularized landmark mean-shift. International Journal of Computer Vision, 2011, 91(2): 200–215
https://doi.org/10.1007/s11263-010-0380-4
|
55 |
Martinez B, Valstar M F, Binefa X, Pantic M. Local evidence aggregation for regression-based facial point detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(5): 1149–1163
https://doi.org/10.1109/TPAMI.2012.205
|
56 |
Shi J B, Tomasi C. Good features to track. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 1994, 593–600
|
57 |
Lucas B D, Kanade T. An iterative image registration technique with an application to stereo vision. In: Proceedings of the 7th International Joint Conference on Artificial Intelligence. 1981, 674–679
|
58 |
Bay H, Tuytelaars T, Van Gool L. SURF: speeded up robust features. In: Proceedings of European Conference on Computer Vision. 2006, 404–417
https://doi.org/10.1007/11744023_32
|
59 |
Comaniciu D, Ramesh V, Meer P. Kernel-based object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(5): 564–577
https://doi.org/10.1109/TPAMI.2003.1195991
|
60 |
Henriques J F, Caseiro R, Martins P, Batista J. Exploiting the circulant structure of tracking-by-detection with kernels. In: Proceedings of European Conference on Computer Vision. 2012, 702–715
https://doi.org/10.1007/978-3-642-33765-9_50
|
61 |
Farnebäck G. Two-frame motion estimation based on polynomial expansion. In: Proceedings of Scandinavian Conference on Image Analysis. 2003, 363–370
https://doi.org/10.1007/3-540-45103-X_50
|
62 |
Tarvainen M P, Ranta-Aho P O, Karjalainen P A. An advanced detrending method with application to HRV analysis. IEEE Transactions on Biomedical Engineering, 2002, 49(2): 172–175
https://doi.org/10.1109/10.979357
|
63 |
Rouast P V, Adam M T P, Cornforth D J, Lux E, Weinhardt C. Using contactless heart rate measurements for real-time assessment of affective states. In: Davis F D, Riedl R, Vom Brocke J, et al, eds. Information Systems and Neuroscience. Springer International Publishing, 2016, 157–163
|
64 |
Monkaresi H, Hussain M S, Calvo R A. Using remote heart rate measurement for affect detection. In: Proceedings of the 27th International Florida Artificial Intelligence Research Society Conference. 2014, 118–123
|
65 |
Zhao F, Li M, Qian Y, Tsien J Z. Remote measurements of heart and respiration rates for telemedicine. PLoS ONE, 2013, 8(10): e71384
https://doi.org/10.1371/journal.pone.0071384
|
66 |
McDuff D, Gontarek S, Picard R. Remote measurement of cognitive stress via heart rate variability. In: Proceedings of the 36th IEEE Annual International Conference of Engineering in Medicine and Biology Society. 2014, 2957–2960
https://doi.org/10.1109/EMBC.2014.6944243
|
67 |
Rahman M A, Barai A, Islam M A, Hashem M M A. Development of a device for remote monitoring of heart rate and body temperature. In: Proceedings of the 15th International Conference on Computer and Information Technology. 2012, 411–416
https://doi.org/10.1109/ICCITechn.2012.6509783
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|