Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front. Comput. Sci.    2018, Vol. 12 Issue (5) : 858-872    https://doi.org/10.1007/s11704-016-6243-6
REVIEW ARTICLE
Remote heart rate measurement using low-cost RGB face video: a technical literature review
Philipp V. ROUAST1, Marc T. P. ADAM2, Raymond CHIONG2(), David CORNFORTH2, Ewa LUX1
1. Institute of Information Systems and Marketing, Karlsruhe Institute of Technology, Karlsruhe 76133, Germany
2. School of Electrical Engineering and Computing, The University of Newcastle, Callaghan NSW 2308, Australia
 Download: PDF(2256 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Remote photoplethysmography (rPPG) allows remote measurement of the heart rate using low-cost RGB imaging equipment. In this study, we review the development of the field of rPPG since its emergence in 2008. We also classify existing rPPG approaches and derive a framework that provides an overview of modular steps. Based on this framework, practitioners can use our classification to design algorithms for an rPPG approach that suits their specific needs. Researchers can use the reviewed and classified algorithms as a starting point to improve particular features of an rPPG algorithm.

Keywords affective computing      heart rate measurement      remote      non-contact      camera-based      photoplethysmography     
Corresponding Author(s): Raymond CHIONG   
Just Accepted Date: 23 August 2016   Online First Date: 20 December 2017    Issue Date: 21 September 2018
 Cite this article:   
Philipp V. ROUAST,Marc T. P. ADAM,Raymond CHIONG, et al. Remote heart rate measurement using low-cost RGB face video: a technical literature review[J]. Front. Comput. Sci., 2018, 12(5): 858-872.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-016-6243-6
https://academic.hep.com.cn/fcs/EN/Y2018/V12/I5/858
1 Zhang Z L, Pi Z Y, Liu B Y. Troika: a general framework for heart rate monitoring using wrist-type photoplethysmographic signals during intensive physical exercise. IEEE Transactions on Biomedical Engineering, 2015, 62(2): 522–531
https://doi.org/10.1109/TBME.2014.2359372
2 Adam M T P, Krämer J, Weinhardt C. Excitement up! Price down! Measuring emotions in dutch auctions. International Journal of Electronic Commerce, 2012, 13(2): 7–39
https://doi.org/10.2753/JEC1086-4415170201
3 Adam M T P, Krämer J, Müller M B. Auction fever! How time pressure and social competition affect bidders’ arousal and bids in retail auctions. Journal of Retailing, 2015, 91(3): 468–485
https://doi.org/10.1016/j.jretai.2015.01.003
4 Astor P J, Adam M T P, Jeřcíc P, Schaaff K, Weinhardt C. Integrating biosignals into information systems: a neurois tool for improving emotion regulation. Journal of Management Information Systems, 2013, 30(3): 247–278
https://doi.org/10.2753/MIS0742-1222300309
5 Riedl R. On the biology of technostress: literature review and research agenda. ACM SIGMIS Database, 2013, 44(1): 18–55
https://doi.org/10.1145/2436239.2436242
6 Verkruysse W, Svaasand L O, Nelson J S. Remote plethysmographic imaging using ambient light. Optics Express, 2008, 16(26): 21434–21445
https://doi.org/10.1364/OE.16.021434
7 McDuff D J, Estepp J R, Piasecki A M, Blackford E B. A survey of remote optical photoplethysmographic imaging methods. In: Proceedings of the 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 2015, 6398–6404
https://doi.org/10.1109/EMBC.2015.7319857
8 Liu H, Wang Y D, Wang L. A review of non-contact, low-cost physiological information measurement based on photoplethysmographic imaging. In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 2012, 2088–2091
9 Kranjec J, Beguš S, Geršak G, Drnovšek J. Non-contact heart rate and heart rate variability measurements: a review. Biomedical Signal Processing and Control, 2014, 13(1): 102–112
https://doi.org/10.1016/j.bspc.2014.03.004
10 Poh M Z, McDuff D J, Picard R W. Non-contact, automated cardiac pulse measurements using video imaging and blind source separation. Optics Express, 2010, 18(10): 10762–10774
https://doi.org/10.1364/OE.18.010762
11 Allen J. Photoplethysmography and its application in clinical physiological measurement. Physiological Measurement, 2007, 28(3): R1–R39
https://doi.org/10.1088/0967-3334/28/3/R01
12 Lindberg L G, Öberg P A. Optical properties of blood in motion. Optical Engineering, 1993, 32(2): 253–257
https://doi.org/10.1117/12.60688
13 Balakrishnan G, Durand F, Guttag J. Detecting pulse from head motions in video. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2013, 3430–3437
https://doi.org/10.1109/CVPR.2013.440
14 Starr I, Rawson A J, Schroeder H A, Joseph N R. Studies on the estimation of cardiac ouptut in man, and of abnormalities in cardiac function, from the heart’s recoil and the blood’s impacts; the ballistocardiogram. American Journal of Physiology, 1939, 127(1): 1–28
15 Hertzman A B, Spealman C R. Observations on the finger volume pulse recorded photoelectrically. American Journal of Physiology, 1937, 119(2): 334–335
16 Poh M Z, McDuff D J, Picard R W. Advancements in noncontact, multiparameter physiological measurements using a webcam. IEEE Transactions on Biomedical Engineering, 2011, 58(1): 7–11
https://doi.org/10.1109/TBME.2010.2086456
17 Lewandowska M, Ruminski J, Kocejko T. Measuring pulse rate with a webcam: a non-contact method for evaluating cardiac activity. In: Proceedings of the Federated Conference on Computer Science and Information Systems (FedCSIS). 2011, 405–410
18 Kwon S, Kim H, Park K S. Validation of heart rate extraction using video imaging on a built-in camera system of a smartphone. In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 2012, 2174–2177
19 Lee K Z, Hung P C, Tsai L W. Contact-free heart rate measurement using a camera. In: Proceedings of the 9th Conference on Computer and Robot Vision. 2012, 147–152
https://doi.org/10.1109/CRV.2012.27
20 Wei L, Tian Y H, Wang Y W, Ebrahimi T, Huang T. Automatic webcam-based human heart rate measurements using laplacian eigenmap. In: Proceedings of Asian Conference on Computer Vision. 2013, 281–292
https://doi.org/10.1007/978-3-642-37444-9_22
21 Wu H Y, Rubinstein M, Shih E, Guttag J V, Durand F, Freeman W T. Eulerian video magnification for revealing subtle changes in the world. ACM Transactions on Graphics, 2012, 31(4): 1–8
https://doi.org/10.1145/2185520.2185561
22 Wu H Y. Eulerian video processing and medical applications. Dissertation for the Master Degree. Cambridge, MA: Massachusetts Institute of Technology, 2012
23 Shan L, Yu M H. Video-based heart rate measurement using head motion tracking and ICA. In: Proceedings of the 6th International Congress on Image and Signal Processing. 2013, 160–164
https://doi.org/10.1109/CISP.2013.6743978
24 Irani R, Nasrollahi K, Moeslund T B. Improved pulse detection from head motions using DCT. In: Proceedings of the 9th International Conference on Computer Vision Theory and Applications. 2014, 118–124
25 De Haan G, Jeanne V. Robust pulse rate from chrominance-based rPPG. IEEE Transactions on Biomedical Engineering, 2013, 60(10): 2878–2886
https://doi.org/10.1109/TBME.2013.2266196
26 De Haan G, Van Leest A. Improved motion robustness of remote-PPG by using the blood volume pulse signature. Physiological Measurement, 2014, 35(9): 1913–1926
https://doi.org/10.1088/0967-3334/35/9/1913
27 Lempe G, Zaunseder S, Wirthgen T, Zipser S, Malberg H. ROI selection for remote photoplethysmography. In: Meinzer H P, Deserno M T, Handels H, et al, eds. Bildverarbeitung für die Medizin 2013. Berlin: Springer, 2013, 99–103
https://doi.org/10.1007/978-3-642-36480-8_19
28 Datcu D, Cidota M, Lukosch S, Rothkrantz L. Noncontact automatic heart rate analysis in visible spectrum by specific face regions. In: Proceedings of the 14th International Conference on Computer Systems and Technologies. 2013, 120–127
https://doi.org/10.1145/2516775.2516805
29 Li X B, Chen J, Zhao G Y, Pietikäinen M. Remote heart rate measurement from face videos under realistic situations. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2014, 4264–4271
https://doi.org/10.1109/CVPR.2014.543
30 McDuff D, Gontarek S, Picard R W. Remote detection of photoplethysmographic systolic and diastolic peaks using a digital camera. IEEE Transactions on Biomedical Engineering, 2014, 61(12): 2948–2954
https://doi.org/10.1109/TBME.2014.2340991
31 Kumar M, Veeraraghavan A, Sabharwal A. DistancePPG: robust noncontact vital signs monitoring using a camera. Biomedical Optics Express, 2015, 6(5): 1565–1588
https://doi.org/10.1364/BOE.6.001565
32 Tasli H E, Gudi A, Den Uyl M. Remote PPG based vital sign measurement using adaptive facial regions. In: Proceedings of IEEE International Conference on Image Processing. 2014, 1410–1414
https://doi.org/10.1109/ICIP.2014.7025282
33 Feng L T, Po L M, Xu X Y, Li Y M. Motion artifacts suppression for remote imaging photoplethysmography. In: Proceedings of the 19th International Conference on Digital Signal Processing. 2014, 18–23
https://doi.org/10.1109/ICDSP.2014.6900813
34 Feng L T, Po L M, Xu X Y, Li Y M, Ma R Y. Motion-resistant remote imaging photoplethysmography based on the optical properties of skin. IEEE Transactions on Circuits and Systems for Video Technology, 2015, 25(5): 879–891
https://doi.org/10.1109/TCSVT.2014.2364415
35 Wang W J, Stuijk S, De Haan G. Exploiting spatial redundancy of image sensor for motion robust rPPG. IEEE Transactions on Biomedical Engineering, 2015, 62(2): 415–425
https://doi.org/10.1109/TBME.2014.2356291
36 McDuff D, Gontarek S, Picard R W. Improvements in remote cardiopulmonary measurement using a five band digital camera. IEEE Transactions on Biomedical Engineering, 2014, 61(10): 2593–2601
https://doi.org/10.1109/TBME.2014.2323695
37 Chwyl B, Chung A G, Deglint J, Wong A, Claus i D A. Remote heart rate measurement through broadband video via stochastic bayesian estimation. Vision Letters, 2015, 1(1): 5
https://doi.org/10.15353/vsnl.v1i1.43
38 Monkaresi H, Calvo R A, Yan H. A machine learning approach to improve contactless heart rate monitoring using a webcam. IEEE Journal of Biomedical and Health Informatics, 2014, 18(4): 1153–1160
https://doi.org/10.1109/JBHI.2013.2291900
39 Hsu Y, Lin Y L, Hsu W. Learning-based heart rate detection from remote photoplethysmography features. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing. 2014, 4433–4437
https://doi.org/10.1109/ICASSP.2014.6854440
40 Tran D N, Lee H, Kim C. A robust real time system for remote heart rate measurement via a camera. In: Proceedings of IEEE International Conference on Multimedia and Expo. 2015, 1–6
41 Li M C, Lin Y H. A real-time non-contact pulse rate detector based on smartphone. In: Proceedings of International Symposium on Next- Generation Electronics. 2015, 1–3
https://doi.org/10.1109/ISNE.2015.7132025
42 Yu Y P, Kwan B H, Lim C L, Wong S L, Raveendran P. Video-based heart rate measurement using short-time fourier transform. In: Proceedings of International Symposium on Intelligent Signal Processing and Communication Systems. 2013, 704–707
https://doi.org/10.1109/ISPACS.2013.6704640
43 Holton B D, Mannapperuma K, Lesniewski P J, Thomas J C. Signal recovery in imaging photoplethysmography. Physiological Measurement, 2013, 34(11): 1499–1511
https://doi.org/10.1088/0967-3334/34/11/1499
44 Xu S C, Sun L Y, Rohde G K. Robust efficient estimation of heart rate pulse from video. Biomedical Optics Express, 2014, 5(4): 1124–1135
https://doi.org/10.1364/BOE.5.001124
45 Feng L T, Po L M, Xu X Y, Li Y M, Cheung C-H, Cheung K-W, Yuan F. Dynamic ROI based on K-means for remote photoplethysmography. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing. 2015, 1310–1314
https://doi.org/10.1109/ICASSP.2015.7178182
46 Han B, Ivanov K, Wang L, Yan Y. Exploration of the optimal skincamera distance for facial photoplethysmographic imaging measurement using cameras of different types. In: Proceedings of the 5th EAI International Conference onWireless Mobile Communication and Healthcare. 2015, 186–189
47 Zhang K H, Zhang L, Yang M H. Real-time compressive tracking. In: Proceedings of European Conference on Computer Vision. 2012, 864–877
https://doi.org/10.1007/978-3-642-33712-3_62
48 Fernández A, Carúz J L, Usamentiaga R, Alvarez E, Casado R. Unobtrusive health monitoring system using video-based physiological information and activity measurements. In: Proceedings of International Conference on Computer, Information and Telecommunication Systems. 2012, 1–5
49 Danelljan M, Häger G, Felsberg M. Accurate scale estimation for robust visual tracking. In: Proceedings of the British Machine Vision Conference. 2014, 1–10
https://doi.org/10.5244/C.28.65
50 Hoffmann K P. Biosignale erfassen und verarbeiten. In: Kramme R, ed. Medizintechnik. Berlin: Springer, 2011, 667–688
https://doi.org/10.1007/978-3-642-16187-2_38
51 Viola P, Jones M. Rapid object detection using a boosted cascade of simple features. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2001, 511–518
https://doi.org/10.1109/CVPR.2001.990517
52 Cootes T F, Edwards G J, Taylor C J. Active appearance models. In: Proceedings of European Conference on Computer Vision. 1998, 484–498
https://doi.org/10.1007/BFb0054760
53 Asthana A, Zafeiriou S, Cheng S Y, Pantic M. Robust discriminative response map fitting with constrained local models. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2013, 3444–3451
https://doi.org/10.1109/CVPR.2013.442
54 Saragih J M, Lucey S, Cohn J F. Deformable model fitting by regularized landmark mean-shift. International Journal of Computer Vision, 2011, 91(2): 200–215
https://doi.org/10.1007/s11263-010-0380-4
55 Martinez B, Valstar M F, Binefa X, Pantic M. Local evidence aggregation for regression-based facial point detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(5): 1149–1163
https://doi.org/10.1109/TPAMI.2012.205
56 Shi J B, Tomasi C. Good features to track. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 1994, 593–600
57 Lucas B D, Kanade T. An iterative image registration technique with an application to stereo vision. In: Proceedings of the 7th International Joint Conference on Artificial Intelligence. 1981, 674–679
58 Bay H, Tuytelaars T, Van Gool L. SURF: speeded up robust features. In: Proceedings of European Conference on Computer Vision. 2006, 404–417
https://doi.org/10.1007/11744023_32
59 Comaniciu D, Ramesh V, Meer P. Kernel-based object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(5): 564–577
https://doi.org/10.1109/TPAMI.2003.1195991
60 Henriques J F, Caseiro R, Martins P, Batista J. Exploiting the circulant structure of tracking-by-detection with kernels. In: Proceedings of European Conference on Computer Vision. 2012, 702–715
https://doi.org/10.1007/978-3-642-33765-9_50
61 Farnebäck G. Two-frame motion estimation based on polynomial expansion. In: Proceedings of Scandinavian Conference on Image Analysis. 2003, 363–370
https://doi.org/10.1007/3-540-45103-X_50
62 Tarvainen M P, Ranta-Aho P O, Karjalainen P A. An advanced detrending method with application to HRV analysis. IEEE Transactions on Biomedical Engineering, 2002, 49(2): 172–175
https://doi.org/10.1109/10.979357
63 Rouast P V, Adam M T P, Cornforth D J, Lux E, Weinhardt C. Using contactless heart rate measurements for real-time assessment of affective states. In: Davis F D, Riedl R, Vom Brocke J, et al, eds. Information Systems and Neuroscience. Springer International Publishing, 2016, 157–163
64 Monkaresi H, Hussain M S, Calvo R A. Using remote heart rate measurement for affect detection. In: Proceedings of the 27th International Florida Artificial Intelligence Research Society Conference. 2014, 118–123
65 Zhao F, Li M, Qian Y, Tsien J Z. Remote measurements of heart and respiration rates for telemedicine. PLoS ONE, 2013, 8(10): e71384
https://doi.org/10.1371/journal.pone.0071384
66 McDuff D, Gontarek S, Picard R. Remote measurement of cognitive stress via heart rate variability. In: Proceedings of the 36th IEEE Annual International Conference of Engineering in Medicine and Biology Society. 2014, 2957–2960
https://doi.org/10.1109/EMBC.2014.6944243
67 Rahman M A, Barai A, Islam M A, Hashem M M A. Development of a device for remote monitoring of heart rate and body temperature. In: Proceedings of the 15th International Conference on Computer and Information Technology. 2012, 411–416
https://doi.org/10.1109/ICCITechn.2012.6509783
[1] Xingyue CHEN, Tao SHANG, Feng ZHANG, Jianwei LIU, Zhenyu GUAN. Dynamic data auditing scheme for big data storage[J]. Front. Comput. Sci., 2020, 14(1): 219-229.
[2] Lu YU,Jun XIE,Songcan CHEN,Lei ZHU. Generating labeled samples for hyperspectral image classification using correlation of spectral bands[J]. Front. Comput. Sci., 2016, 10(2): 292-301.
[3] Peng JIANG,Qiaoyan WEN,Wenmin LI,Zhengping JIN,Hua ZHANG. An anonymous and efficient remote biometrics user authentication scheme in a multi server environment[J]. Front. Comput. Sci., 2015, 9(1): 142-156.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed