Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front. Comput. Sci.    2017, Vol. 11 Issue (1) : 1-3    https://doi.org/10.1007/s11704-016-6907-2
PERSPECTIVE
Urban computing: enabling urban intelligence with big data
Yu ZHENG1,2,3()
1. Microsoft Research, Beijing 100080, China
2. School of Computer Science and Technology, Xidian University, Xi’an 710071, China
3. Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
 Download: PDF(397 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Corresponding Author(s): Yu ZHENG   
Just Accepted Date: 06 December 2016   Issue Date: 11 January 2017
 Cite this article:   
Yu ZHENG. Urban computing: enabling urban intelligence with big data[J]. Front. Comput. Sci., 2017, 11(1): 1-3.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-016-6907-2
https://academic.hep.com.cn/fcs/EN/Y2017/V11/I1/1
1 Zheng Y, Capra L, Wolfson O, Yang H. Urban computing: concepts, methodologies, and applications. ACM Transactions on Intelligent Systems and Technology, 2014, 5(3): 222–235
https://doi.org/10.1145/2629592
2 Ji S G, Zheng Y, Li T R. Urban sensing based on human mobility. In: Proceedings of the 18th ACM International Conference on Ubiquitous Computing (UbiComp 2016). 2016, 1040–1051
https://doi.org/10.1145/2971648.2971735
3 Zheng Y. Trajectory data mining: an overview. ACM Transactions on Intelligent Systems and Technology, 2015, 6(3)
https://doi.org/10.1145/2743025
4 Bao J, Li R Y, Yi X W, Zheng Y. Managing massive trajectories on the cloud. In: Proceedings of the 24th ACM International Conference on Advances in Geographical Information Systems (ACM SIGSPATIAL 2016). 2016
https://doi.org/10.1145/2996913.2996916
5 Zheng Y. Methodologies for cross-domain data fusion: an overview. IEEE Transactions on Big Data, 2015, 1(1)
6 Zhang J B, Zheng Y, Qi D K. Deep spatio-temporal residual networks for citywide crowd flows prediction. In: Proceedings of the 31st AAAI Conference on Artificial Intelligence. 2016
7 Liu D Y, Weng D, Li Y H, Bao J, Zheng Y, Qu H M, Wu Y C. SmartAdP: visual analytics of large-scale taxi trajectories for selecting billboard locations. IEEE Transactions on Visualization & Computer Graphics, 2017, 23(1): 1–10
https://doi.org/10.1109/TVCG.2016.2598432
8 Zheng Y, Liu F, Hsieh H P. U-Air: when urban air quality inference meets big data. In: Proceedings of the 19th SIGKDD Conference on Knowledge Discovery and Data Mining. 2013, 1436–1444
https://doi.org/10.1145/2487575.2488188
9 Zheng Y, Yi X W, Li M, Li R Y, Shan Z Q, Chang E, Li T R. Forecasting fine-grained air quality based on big data. In: Proceeding of the 21st SIGKDD Conference on Knowledge Discovery and Data Mining (KDD 2015). 2015, 2267–2276
https://doi.org/10.1145/2783258.2788573
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed