Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front. Comput. Sci.    2019, Vol. 13 Issue (1) : 183-198    https://doi.org/10.1007/s11704-017-6114-9
RESEARCH ARTICLE
Saliency-based framework for facial expression recognition
Rizwan Ahmed KHAN1,2(), Alexandre MEYER1(), Hubert KONIK3, Saida BOUAKAZ1
1. Université de Lyon, CNRS, LIRIS, UMR5205, Université Lyon 1, Lyon F-69622, France
2. Faculty of Information Technology, Barrett Hodgson University, Karachi 74900, Pakistan
3. Laboratoire Hubert Curien, UMR5516, Université Jean Monnet, Saint-Etienne 42000, France
 Download: PDF(912 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This article proposes a novel framework for the recognition of six universal facial expressions. The framework is based on three sets of features extracted from a face image: entropy, brightness, and local binary pattern. First, saliency maps are obtained using the state-of-the-art saliency detection algorithm “frequency-tuned salient region detection”. The idea is to use saliency maps to determine appropriate weights or values for the extracted features (i.e., brightness and entropy).We have performed a visual experiment to validate the performance of the saliency detection algorithm against the human visual system. Eye movements of 15 subjects were recorded using an eye-tracker in free-viewing conditions while they watched a collection of 54 videos selected from the Cohn-Kanade facial expression database. The results of the visual experiment demonstrated that the obtained saliency maps are consistent with the data on human fixations. Finally, the performance of the proposed framework is demonstrated via satisfactory classification results achieved with the Cohn-Kanade database, FG-NET FEED database, and Dartmouth database of children’s faces.

Keywords facial expression recognition      classification      salient regions      entropy      brightness      local binary pattern     
Corresponding Author(s): Rizwan Ahmed KHAN,Alexandre MEYER   
Just Accepted Date: 14 April 2017   Online First Date: 09 May 2018    Issue Date: 31 January 2019
 Cite this article:   
Rizwan Ahmed KHAN,Alexandre MEYER,Hubert KONIK, et al. Saliency-based framework for facial expression recognition[J]. Front. Comput. Sci., 2019, 13(1): 183-198.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-017-6114-9
https://academic.hep.com.cn/fcs/EN/Y2019/V13/I1/183
1 PEkman, W V Friesen, PEllsworth. Emotion in the Human Face: Guidelines for Research and an Integration of Findings. New York: Pergamon Press, 1972
2 PEkman, W V Friesen. Unmasking the Face: A Guide to Recognizing Emotions from Facial Clues. New Jersey: Prentice Hall, 1975
3 PEkman. Telling Lies: Clues to Deceit in the Marketplace, Politics, and Marriage. 3rd ed. New York: W. W. Norton & Company, 2001
4 PEkman. Facial expression of emotion. Psychologist, 1993, 48(4): 384–392
https://doi.org/10.1037/0003-066X.48.4.384
5 PBull. State of the art: nonverbal communication. Psychologist, 2001, 14(12): 644–647
6 V HYngve. On getting a word in edgewise. In: Proceedings of the 6th Regional Meeting of the Chicago Linguistic Society. 1970, 567–578
7 PCarrera-Levillain, J Fernandez-Dols. Neutral faces in context: their emotional meaning and their function. Journal of Nonverbal Behavior, 1994, 18(4): 281–299
https://doi.org/10.1007/BF02172290
8 JMFernandez-Dols, H Wallbott, FSanchez. Emotion category accessibility and the decoding of emotion from facial expression and context. Journal of Nonverbal Behavior, 1991, 15(2): 107–123
https://doi.org/10.1007/BF00998266
9 PEkman. Universals and cultural differences in facial expressions of emotion. In: Proceedings of Nebraska Symposium on Motivation. 1971, 207–283
10 URajashekar, L K Cormack, A CBovik. Visual search: structure from noise. In: Proceedings of Eye Tracking Research & Applications Symposium. 2002, 119–123
https://doi.org/10.1145/507072.507096
11 R AKhan , HKonik, EDinet. Enhanced image saliency model based on blur identification. In: Proceedings of IEEE International Conference on Image and Vision Computing New Zealand (IVCNZ). 2010, 1–7
https://doi.org/10.1109/IVCNZ.2010.6148833
12 RAchanta, SHemami, FEstrada, S Susstrunk. Frequency-tuned salient region detection. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. 2009, 1597–1604
https://doi.org/10.1109/CVPR.2009.5206596
13 PViola, MJones. Rapid object detection using a boosted cascade of simple features. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2001, 511–518
https://doi.org/10.1109/CVPR.2001.990517
14 GLittlewort, M S Bartlett, IFasel, JSusskind, J Movellan. Dynamics of facial expression extracted automatically from video. Image and Vision Computing, 2006, 24(6): 615–625
https://doi.org/10.1016/j.imavis.2005.09.011
15 YTian. Evaluation of face resolution for expression analysis. In: Proceedings of Computer Vision and Pattern Recognition Workshop, 2004
16 PYang, QLiu, D NMetaxas. Exploring facial expressions with compositional features. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2010, 2638–2644
https://doi.org/10.1109/CVPR.2010.5539978
17 TOjala, M Pietikäinen, DHarwood. A comparative study of texture measures with classification based on featured distribution. Pattern Recognition, 1996, 29(1): 51–59
https://doi.org/10.1016/0031-3203(95)00067-4
18 R AKhan, AMeyer, HKonik, S Bouakaz. Exploring human visual system: study to aid the development of automatic facial expression recognition framework. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). 2012, 49–54
https://doi.org/10.1109/CVPRW.2012.6239186
19 VOjansivu, J Heikkilä. Blur insensitive texture classification using local phase quantization. In: Proceedings of International conference on Image and Signal Processing. 2008, 236–243
https://doi.org/10.1007/978-3-540-69905-7_27
20 R AKhan, AMeyer, HKonik, S Bouakaz. Human vision inspired framework for facial expressions recognition. In: Proceedings of IEEE International Conference on Image Processing (ICIP). 2012, 2593–2596
https://doi.org/10.1109/ICIP.2012.6467429
21 GZhao, M Pietikäinen. Dynamic texture recognition using local binary patterns with an application to facial expressions. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2007, 29(6): 915–928
https://doi.org/10.1109/TPAMI.2007.1110
22 YZhang, QJi. Active and dynamic information fusion for facial expression understanding from image sequences. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(5): 699–714
https://doi.org/10.1109/TPAMI.2005.93
23 M FValstar, IPatras, MPantic. Facial action unit detection using probabilistic actively learned support vector machines on tracked facial point data. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition Workshop. 2005, 76–84
https://doi.org/10.1109/CVPR.2005.457
24 YBai, LGuo, LJin, Q Huang. A novel feature extraction method using pyramid histogram of orientation gradients for smile recognition. In: Proceedings of IEEE International Conference on Image Processing (ICIP). 2009, 3305–3308
25 R AKhan, AMeyer, HKonik, S Bouakaz. Pain detection through shape and appearance features. In: Proceedings of IEEE International Conference on Multimedia and Expo (ICME). 2013, 1–6
https://doi.org/10.1109/ICME.2013.6607608
26 R AKhan, AMeyer , SBouakaz. Automatic affect analysis: from children to adults. In: Proceedings of International Symposium on Visual Computing (ISVC). 2015, 304–313
https://doi.org/10.1007/978-3-319-27863-6_28
27 GZhao, M Pietikäinen. Boosted multi-resolution spatiotemporal descriptors for facial expression recognition. Pattern Recognition Letters, 2009, 30(12): 1117–1127
https://doi.org/10.1016/j.patrec.2009.03.018
28 PLucey, J FCohn, TKanade, J Saragih, ZAmbadar, IMatthews. The extended cohn-kande dataset (CK+): a complete facial expression dataset for action unit and emotion-specified expression. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition Workshops. 2010, 94–101
29 FWallhoff. Facial expressions and emotion database. 2006
30 K ADalrymple, JGomez, BDuchaine. The Dartmouth database of children’s faces: acquisition and validation of a new face stimulus set. PLoS ONE, 2013, 8(11): e79131
https://doi.org/10.1371/journal.pone.0079131
31 YTian, TKanade, J FCohn. Handbook of Face Recognition. Berlin: Springer, 2005
32 TKanade, J FCohn, YTian. Comprehensive database for facial expression analysis. In: Proceedings of IEEE International Conference on Automatic face and Gesture Recognition. 2000, 46–53
https://doi.org/10.1109/AFGR.2000.840611
33 D TLin, D CPan. Integrating a mixed-feature model and multiclass support vector machine for facial expression recognition. Integrated Computer-Aided Engineering, 2009, 16(1): 61–74
34 PEkman, W Friesen. The facial action coding system: a technique for the measurement of facial movements. Consulting Psychologist. 1978
35 MPantic, M F Valstar, RRademaker, LMaat. Web-based database for facial expression analysis. In: Proceedings of IEEE International Conference on Multimedia and Expo. 2005
https://doi.org/10.1109/ICME.2005.1521424
36 IKotsia, S Zafeiriou, s IPita. Texture and shape information fusion for facial expression and facial action unit recognition. Pattern Recognition, 2008, 41(3): 833–851
https://doi.org/10.1016/j.patcog.2007.06.026
37 XYang, DHuang, YWang, L Chen. Automatic 3D facial expression recognition using geometric scattering representation. In: Proceedings of the 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition. 2015, 1–6
38 XZhao, DHuang, EDellandrea, LChen. Automatic 3D facial expression recognition based on a Bayesian belief net and a statistical facial feature model. In: Proceedings of the 20th IEEE International Conference on Pattern Recognition. 2010, 3724–3727
https://doi.org/10.1109/ICPR.2010.907
39 ASavran, BSankur, M TBilge. Comparative evaluation of 3D vs. 2D modality for automatic detection of facial action units. Pattern Recognition, 2012, 45(2): 767–782
https://doi.org/10.1016/j.patcog.2011.07.022
40 LYin, XWei, PLongo, A Bhuvanesh. Analyzing facial expressions using intensity-variant 3D data for human computer interaction. In: Proceedings of the 18th International Conference on Pattern Recognition. 2006, 1248–1251
41 HLi, HDing, DHuang, Y Wang, XZhao, JMorvan, LChen. An efficient multimodal 2D+ 3D feature-based approach to automatic facial expression recognition. Computer Vision and Image Understanding, 2015, 140: 83–92
https://doi.org/10.1016/j.cviu.2015.07.005
42 MRosato, XChen, LYin. Automatic registration of vertex correspondences for 3D facial expression analysis. In: Proceedings of IEEE International Conference on Biometrics: Theory, Applications and Systems. 2008, 1–7
https://doi.org/10.1109/BTAS.2008.4699369
43 VLe, HTang, T SHuang. Expression recognition from 3D dynamic faces using robust spatio-temporal shape features. In: Proceedings of IEEE International Conference and Workshops on Automatic Face and Gesture Recognition. 2011, 414–421
https://doi.org/10.1109/FG.2011.5771435
44 TJost, N Ouerhani, RWartburg, RMüri, H Hügli. Assessing the contribution of color in visual attention. Computer Vision and Image Understanding, 2005, 100(1–2): 107–123
https://doi.org/10.1016/j.cviu.2004.10.009
45 R AKhan, HKonik, EDinet. Visual attention: effects of blur. In: Proceedings of IEEE International Conference on Image Processing. 2011, 3289–3292
https://doi.org/10.1109/ICIP.2011.6116373
46 HCollewijin, M R Steinman, J CErkelens, ZPizlo, JSteen. The Head- Neck Sensory Motor System. New York: Oxford University Press, 1992
47 D WCunningham, M Kleiner, CWallraven, HBülthoff. Manipulating video sequences to determine the components of conversational facial expressions. ACM Transactions on Applied Perception, 2005, 2(3): 251–269
https://doi.org/10.1145/1077399.1077404
48 J DBoucher, PEkman. Facial areas and emotional information. Journal of Communication, 1975, 25(2): 21–29
https://doi.org/10.1111/j.1460-2466.1975.tb00577.x
49 C EShannon, WWeave. The Mathematical Theory of Communication. Urbana, IL: University of Illinois Press, 1963
50 GWyszecki, W SStiles. Color Science: Concepts and Methods, Quantitative Data and Formulae. 2nd ed. New York: John Wiley and Sons, 1982
51 SBezryadin, PBourov. Color coordinate system for accurate color image editing software. In: Proceedings of International Conference on Printing Technology. 2006, 145–148
52 CShan, SGong, P WMcOwan. Facial expression recognition based on local binary patterns: a comprehensive study. Image and Vision Computing, 2009, 27(6): 803–816
https://doi.org/10.1016/j.imavis.2008.08.005
53 LItti, CKoch, ENiebur. A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(11): 1254–1259
https://doi.org/10.1109/34.730558
54 CKoch, JHarel, PPerona. Graph-based visual saliency. In: Proceedings of Neural Information Processing Systems. 2006, 545–552
55 XHou, LZhang. Saliency detection: a spectral residual approach. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2007, 1–8
https://doi.org/10.1109/CVPR.2007.383267
56 J BCohen. Visual Color and Color Mixture: The Fundamental Color Space. Urbana: University of Illinois Press, 2000
57 CIEC. Commission internationale de l’Eclairage proceedings. Cambridge: Cambridge University Press, 1931
58 R AKhan, AMeyer, HKonik, S Bouakaz. Framework for reliable, real-time facial expression recognition for low resolution images. Pattern Recognition Letters, 2013, 34(10): 1159–1168
https://doi.org/10.1016/j.patrec.2013.03.022
59 TOjala, M Pietikäinen, TMäenpää. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transaction on Pattern Analysis andMachine Intelligence, 2002, 24(7): 971–987
60 CZhan, WLi, POgunbona, F Safaei. A real-time facial expression recognition system for online games. International Journal of Computer Games Technology, 2008
https://doi.org/10.1155/2008/542918
61 EPiatkowska. Facial expression recognition system. Dissertation for the Master’s Degree. Chicago: DePaul University, 2010
62 AKhanum, MMufti, YJaved, Z Shafiq. Fuzzy case-based reasoning for facial expression recognition. Fuzzy Sets and Systems, 2009, 160(2): 231–250
https://doi.org/10.1016/j.fss.2008.05.022
63 SRosdiyana, S Hideyuki. Extraction of the minimum number of gabor wavelet parameters for the recognition of natural facial expressions. Artificial Life and Robotics, 2011, 16(1): 21–31
https://doi.org/10.1007/s10015-011-0871-6
64 H LEgger, D SPine, ENelson, E Leibenluft, MErnst, KTowbin, , AAngold. The NIMH child emotional faces picture set (NIMH-ChEFS): a new set of children’s facial emotion stimuli. International Journal of Methods in Psychiatric Research, 2011, 20(3): 145–156
https://doi.org/10.1002/mpr.343
[1] Yunyun WANG, Jiao HAN, Yating SHEN, Hui XUE. Pointwise manifold regularization for semi-supervised learning[J]. Front. Comput. Sci., 2021, 15(1): 151303-.
[2] Panthadeep BHATTACHARJEE, Pinaki MITRA. A survey of density based clustering algorithms[J]. Front. Comput. Sci., 2021, 15(1): 151308-.
[3] Qianchen YU, Zhiwen YU, Zhu WANG, Xiaofeng WANG, Yongzhi WANG. Estimating posterior inference quality of the relational infinite latent feature model for overlapping community detection[J]. Front. Comput. Sci., 2020, 14(6): 146323-.
[4] Je Sen TEH, Weijian TENG, Azman SAMSUDIN, Jiageng CHEN. A post-processing method for true random number generators based on hyperchaos with applications in audio-based generators[J]. Front. Comput. Sci., 2020, 14(6): 146405-.
[5] Parnika PARANJAPE, Meera DHABU, Parag DESHPANDE. A novel classifier for multivariate instance using graph class signatures[J]. Front. Comput. Sci., 2020, 14(4): 144307-.
[6] Muhammad Aminur RAHAMAN, Mahmood JASIM, Md. Haider ALI, Md. HASANUZZAMAN. Bangla language modeling algorithm for automatic recognition of hand-sign-spelled Bangla sign language[J]. Front. Comput. Sci., 2020, 14(3): 143302-.
[7] Xibin DONG, Zhiwen YU, Wenming CAO, Yifan SHI, Qianli MA. A survey on ensemble learning[J]. Front. Comput. Sci., 2020, 14(2): 241-258.
[8] Hui XUE, Haiming XU, Xiaohong CHEN, Yunyun WANG. A primal perspective for indefinite kernel SVM problem[J]. Front. Comput. Sci., 2020, 14(2): 349-363.
[9] Changlong WANG, Zhiyong FENG, Xiaowang ZHANG, Xin WANG, Guozheng RAO, Daoxun FU. ComR: a combined OWL reasoner for ontology classification[J]. Front. Comput. Sci., 2019, 13(1): 139-156.
[10] Munish SAINI, Kuljit Kaur CHAHAL. Change profile analysis of open-source software systems to understand their evolutionary behavior[J]. Front. Comput. Sci., 2018, 12(6): 1105-1124.
[11] Shuaiqiang WANG, Yilong YIN. Polygene-based evolutionary algorithms with frequent pattern mining[J]. Front. Comput. Sci., 2018, 12(5): 950-965.
[12] Sudipta ROY, Debnath BHATTACHARYYA, Samir Kumar BANDYOPADHYAY, Tai-Hoon KIM. An improved brain MR image binarization method as a preprocessing for abnormality detection and features extraction[J]. Front. Comput. Sci., 2017, 11(4): 717-727.
[13] Wei SHAO,Yi DING,Hong-Bin SHEN,Daoqiang ZHANG. Deep model-based feature extraction for predicting protein subcellular localizations from bio-images[J]. Front. Comput. Sci., 2017, 11(2): 243-252.
[14] Hao ZHENG,Xin GENG. Facial expression recognition via weighted group sparsity[J]. Front. Comput. Sci., 2017, 11(2): 266-275.
[15] Jian-Hao LUO,Wang ZHOU,Jianxin WU. Image categorization with resource constraints: introduction, challenges and advances[J]. Front. Comput. Sci., 2017, 11(1): 13-26.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed