Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front. Comput. Sci.    2018, Vol. 12 Issue (5) : 825-839    https://doi.org/10.1007/s11704-018-7304-9
REVIEW ARTICLE
Large-scale video compression: recent advances and challenges
Tao TIAN1,2,3, Hanli WANG1,2,3()
1. Department of Computer Science and Technology, Tongji University, Shanghai 201804, China
2. Key Laboratory of Embedded System and Service Computing, Ministry of Education, Tongji University, Shanghai 200092, China
3. Shanghai Engineering Research Center of Industrial Vision Perception & Intelligent Computing, Shanghai 200092, China
 Download: PDF(785 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The evolution of social network and multimedia technologies encourage more and more people to generate and upload visual information, which leads to the generation of large-scale video data. Therefore, preeminent compression technologies are highly desired to facilitate the storage and transmission of these tremendous video data for a wide variety of applications. In this paper, a systematic review of the recent advances for large-scale video compression (LSVC) is presented. Specifically, fast video coding algorithms and effective models to improve video compression efficiency are introduced in detail, since coding complexity and compression efficiency are two important factors to evaluate video coding approaches. Finally, the challenges and future research trends for LSVC are discussed.

Keywords large-scale video compression      fast video coding      compression efficiency     
Corresponding Author(s): Hanli WANG   
Just Accepted Date: 12 February 2018   Online First Date: 09 May 2018    Issue Date: 21 September 2018
 Cite this article:   
Tao TIAN,Hanli WANG. Large-scale video compression: recent advances and challenges[J]. Front. Comput. Sci., 2018, 12(5): 825-839.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-018-7304-9
https://academic.hep.com.cn/fcs/EN/Y2018/V12/I5/825
1 Wiegand T, Sullivan G J, Bjøntegaard G, Luthra A. Overview of the H.264/AVC video coding standard. IEEE Transactions on Circuits and Systems for Video Technology, 2003, 13(7): 560–576
https://doi.org/10.1109/TCSVT.2003.815165
2 Sullivan G J, Ohm J R, Han W J, Wiegand T. Overview of the high efficiency video coding (HEVC) standard. IEEE Transactions on Circuits and Systems for Video Technology, 2012, 22(12): 1649–1668
https://doi.org/10.1109/TCSVT.2012.2221191
3 Cherubini M, Oliveira R D, Oliver N. Understanding near-duplicate videos: a user-centric approach. In: Proceedings of ACM International Conference on Multimedia. 2009, 35–44
https://doi.org/10.1145/1631272.1631280
4 Zhao L, Fan X, Ma S, Zhao D. Fast intra-encoding algorithm for high efficiency video coding. Signal Processing: Image Communication, 2014, 29(9): 935–944
https://doi.org/10.1016/j.image.2014.06.008
5 Cho S, Kim M. Fast CU splitting and pruning for suboptimal CU partitioning in HEVC intra coding. IEEE Transactions on Circuits and Systems for Video Technology, 2013, 23(9): 1555–1564
https://doi.org/10.1109/TCSVT.2013.2249017
6 Min B, Cheung R C C. A fast CU size decision algorithm for the HEVC intra encoder. IEEE Transactions on Circuits and Systems for Video Technology, 2015, 25(5): 892–896
https://doi.org/10.1109/TCSVT.2014.2363739
7 Zhang Q, Sun J, Duan Y, Guo Z. A two-stage fast CU size decision method for HEVC intracoding. In: Proceedings of International Workshop on Multimedia Signal Processing. 2015, 1–6
https://doi.org/10.1109/MMSP.2015.7340816
8 Lee D, Jeong J. Fast intra coding unit decision for high efficiency video coding based on statistical information. Signal Processing: Image Communication. 2017, 55: 121–129
https://doi.org/10.1016/j.image.2017.03.019
9 Wang Y, Fan X, Zhao L, Ma S, Zhao D, Gao W. A fast intra coding algorithm for HEVC. In: Proceedings of IEEE International Conference on Image Processing. 2014, 4117–4121
https://doi.org/10.1109/ICIP.2014.7025836
10 Wang Y, Takagi R, Yoshitake G. A simple and fast CU division algorithm for HEVC intra prediction. IEICE Transactions on Information and Systems, 2017, 100(5): 1140–1143
https://doi.org/10.1587/transinf.2016EDL8134
11 Zhang Y, Kwong S, Zhang G, Pan Z, Yuan H, Jiang G. Low complexity HEVC intra coding for high-quality mobile video communication. IEEE Transactions on Industrial Informatics, 2015, 11(6): 1492–1504
https://doi.org/10.1109/TII.2015.2491646
12 Liu Z, Yu X, Gao Y, Chen S, Ji X, Wang D. CU partition mode decision for HEVC hardwired intra encoder using convolution neural network. IEEE Transactions on Image Processing, 2016, 25(11): 5088–5103
https://doi.org/10.1109/TIP.2016.2601264
13 Lim K, Lee J, Kim S, Lee S. Fast PU skip and split termination algorithm for HEVC intra prediction. IEEE Transactions on Circuits and Systems for Video Technology, 2015, 25(8): 1335–1346
https://doi.org/10.1109/TCSVT.2014.2380194
14 Hu N, Yang E H. Fast mode selection for HEVC intra-frame coding with entropy coding refinement based on a transparent composite model. IEEE Transactions on Circuits and Systems for Video Technology, 2015, 25(9): 1521–1532
https://doi.org/10.1109/TCSVT.2015.2395772
15 Na S, Lee W, Yoo K. Edge-based fast mode decision algorithm for intra prediction in HEVC. In: Proceedings of IEEE International Conference on Consumer Electronics. 2014, 11–14
https://doi.org/10.1109/ICCE.2014.6775887
16 Chen G, Liu Z, Ikenaga T, Wang D. Fast HEVC intra mode decision using matching edge detector and kernel density estimation alike histogram generation. In: Proceedings of IEEE International Symposium on Circuits and Systems. 2013, 53–56
17 Yao Y, Li X J, Lu Y. Fast intra mode decision algorithm for HEVC based on dominant edge assent distribution. Multimedia Tools and Applications, 2015, 75(4): 1963–1981
https://doi.org/10.1007/s11042-014-2382-7
18 Shen L, Zhang Z, An P. Fast CU size decision and mode decision algorithm for HEVC intra coding. IEEE Transactions on Consumer Electronics, 2013, 59(1): 207–213
https://doi.org/10.1109/TCE.2013.6490261
19 Zhang T, Sun M T, Zhao D, Gao W. Fast intra mode and CU size decision for HEVC. IEEE Transactions on Circuits and Systems for Video Technology, 2017, 27(8): 1714–1726
https://doi.org/10.1109/TCSVT.2016.2556518
20 Xiong J, Li H, Meng F, Wu Q, Ngan K N. Fast HEVC inter CU decision based on latent SAD estimation. IEEE Transactions on Multimedia, 2015, 17(12): 2147–2159
https://doi.org/10.1109/TMM.2015.2491018
21 Shen L, Liu Z, Zhang X, Zhao W, Zhang Z. An effective CU size decision method for HEVC encoders. IEEE Transactions on Multimedia, 2013, 15(2): 465–470
https://doi.org/10.1109/TMM.2012.2231060
22 Pan Z, Kwong S, Zhang Y, Lei J, Yuan H. Fast coding tree unit depth decision for high efficiency video coding. In: Proceedings of IEEE International Conference on Image Processing. 2014, 3214–3218
https://doi.org/10.1109/ICIP.2014.7025650
23 Wang H, Heng Y, Dun H. Optimal stopping theory based algorithm for coding unit size decision in HEVC. In: Proceedings of Asia- Pacific Signal and Information Processing Association Annual Summit and Conference. 2014, 1–6
https://doi.org/10.1109/APSIPA.2014.7041645
24 Wu X, Wang H, Wei Z. Optimal stopping theory based fast coding tree unit decision for high efficiency video coding. In: Proceedings of Visual Communications and Image Processing. 2016, 1–4
https://doi.org/10.1109/VCIP.2016.7805450
25 Li Y, Yang G, Zhu Y, Ding X, Sun X. Adaptive inter CU depth decision for HEVC using optimal selection model and encoding parameters. IEEE Transactions on Broadcasting, 2017, 63(3): 535–546
https://doi.org/10.1109/TBC.2017.2704423
26 Zupancic I, Blasi S G, Peixoto E, Izquierdo E. Inter-prediction optimizations for video coding using adaptive coding unit visiting order. IEEE Transactions on Multimedia, 2016, 18(9): 1677–1690
https://doi.org/10.1109/TMM.2016.2579505
27 Yang J, Kim J, Won K, Lee H, Jeon B. Early skip detection for HEVC. JCT-VC document, JCTVC-G543, 2011.
28 Goswami K, Lee J H, Jang K S, Kim B G, Kwon K K. Entropy difference-based early skip detection technique for high-efficiency video coding. Journal of Real-Time Image Processing, 2016, 12(2): 237–245
https://doi.org/10.1007/s11554-014-0476-0
29 Lee H, Shim H J, Park Y, Jeon B. Early skip mode decision for HEVC encoder with emphasis on coding quality. IEEE Transactions on Broadcasting, 2015, 61(3): 388–397
https://doi.org/10.1109/TBC.2015.2419172
30 Li Y, Yang G, Zhu Y, Ding X, Sun X. Unimodal stopping model based early SKIP mode decision for high efficiency video coding. IEEE Transactions on Multimedia, 2017, 19(7): 1431–1441
https://doi.org/10.1109/TMM.2017.2669863
31 Shen L, Zhang Z, Liu Z. Adaptive inter-mode decision for HEVC jointly utilizing inter-level and spatiotemporal correlations. IEEE Transactions on Circuits and Systems for Video Technology, 2014, 24(10): 1709–1722
https://doi.org/10.1109/TCSVT.2014.2313892
32 Zhang J, Li B, Li H. An efficient fast mode decision method for inter prediction in HEVC. IEEE Transactions on Circuits and Systems for Video Technology, 2016, 26(8): 1502–1515
https://doi.org/10.1109/TCSVT.2015.2461991
33 Jung S H, Park H W. A fast mode decision method in HEVC using adaptive ordering of modes. IEEE Transactions on Circuits and Systems for Video Technology, 2016, 26(10): 1846–1858
https://doi.org/10.1109/TCSVT.2015.2473303
34 Ahn S, Lee B, Kim M. A novel fast CU encoding scheme based on spatiotemporal encoding parameters for HEVC inter coding. IEEE Transactions on Circuits and Systems for Video Technology, 2015, 25(3): 422–435
https://doi.org/10.1109/TCSVT.2014.2360031
35 Chen F, Li P, Peng Z, Jiang G, Yu M, Shao F. A fast inter coding algorithm for HEVC based on texture and motion quad-tree models. Signal Processing: Image Communication, 2016, 47: 271–279
https://doi.org/10.1016/j.image.2016.07.002
36 Kim H S, Park R H. Fast CU partitioning algorithm for HEVC using an online-learning-based bayesian decision rule. IEEE Transactions on Circuits and Systems for Video Technology, 2016, 26(1): 130–138
https://doi.org/10.1109/TCSVT.2015.2444672
37 Correa G, Assuncao P A, Agostini L V, Silva Cruz L A. Fast HEVC encoding decisions using data mining. IEEE Transactions on Circuits and Systems for Video Technology, 2015, 25(4): 660–673
https://doi.org/10.1109/TCSVT.2014.2363753
38 Zhang Y, Kwong S, Wang X, Yuan H, Pan Z, Xu L. Machine learningbased coding unit depth decisions for flexible complexity allocation in high efficiency video coding. IEEE Transactions on Image Processing, 2015, 24(7): 2225–2238
https://doi.org/10.1109/TIP.2015.2417498
39 Zhu L, Zhang Y, Pan Z, Wang R, Kwong S, Peng Z. Binary and multiclass learning based low complexity optimization for HEVC encoding. IEEE Transactions on Broadcasting, 2017, 63(3): 547–561
https://doi.org/10.1109/TBC.2017.2711142
40 Kim I K, McCann K, Sugimoto K, Han W J. High efficiency video coding (HEVC) test model 10 encoder description. JCT-VC, Doc. JCTVC-L1002, 2013
41 Zhao L, Tian Y, Huang T. Background-foreground division based search for motion estimation in surveillance video coding. In: Proceedings of IEEE International Conference on Multimedia and Expo. 2014, 1–6
https://doi.org/10.1109/ICME.2014.6890164
42 Zhu W, Ding W, Xu J, Shi Y, Yin B. Hash-based block matching for screen content coding. IEEE Transactions on Multimedia, 2015, 17(7): 935–944
https://doi.org/10.1109/TMM.2015.2428171
43 Gao L, Dong S, Wang W, Wang R, Gao W. A novel integer-pixel motion estimation algorithm based on quadratic prediction. In: Proceedings of IEEE International Conference on Image Processing. 2015, 2810–2814
https://doi.org/10.1109/ICIP.2015.7351315
44 Chen K, Sun J, Guo Z, Zhao D. A novel two-step integer-pixel motion estimation algorithm for HEVC encoding on a GPU. In: Proceedings of International Conference on Multimedia Modeling. 2017, 28–36
https://doi.org/10.1007/978-3-319-51814-5_3
45 Liao Z T, Shen C A. A novel search window selection scheme for the motion estimation of HEVC systems. In: Proceedings of International SoC Design Conference. 2015, 267–268
https://doi.org/10.1109/ISOCC.2015.7401750
46 Li Y, Liu Y, Yang H, Yang D. An adaptive search range method for HEVC with the k-nearest neighbor algorithm. In: Proceedings of Visual Communications and Image Processing. 2015, 1–4
https://doi.org/10.1109/VCIP.2015.7457794
47 Pan Z, Lei J, Zhang Y, Sun X, Kwong S. Fast motion estimation based on content property for low-complexity H.265/HEVC encoder. IEEE Transactions on Broadcasting, 2016, 62(3): 675–684
https://doi.org/10.1109/TBC.2016.2580920
48 Fan R, Zhang Y, Li B. Motion classification-based fast motion estimation for high-efficiency video coding. IEEE Transactions on Multimedia, 2017, 19(5): 893–907
https://doi.org/10.1109/TMM.2016.2642786
49 Lim D B, Choi Y K, Lee H J, Chae S I. A fast fractional motion estimation algorithm for high efficiency video coding. In: Proceedings of International Conference on Electronics, Information, and Communications. 2016, 1–4
https://doi.org/10.1109/ELINFOCOM.2016.7562986
50 Jia S, Ding W, Shi Y, Yin B. A fast sub-pixel motion estimation algorithm for HEVC. IEEE International Symposium on Circuits and Systems. 2016, 566–569
https://doi.org/10.1109/ISCAS.2016.7527303
51 Zhang Y, Kwong S, Jiang G, Wang H. Efficient multi-reference frame selection algorithm for hierarchical B pictures inmultiview video coding. IEEE Transactions on Broadcasting, 2011, 57(1): 15–23
https://doi.org/10.1109/TBC.2010.2082670
52 Liu Z, Li L, Song Y, Li S, Goto S, Ikenaga T. Motion feature and hadamard coefficient-based fast multiple reference frame motion estimation for H.264. IEEE Transactions on Circuits and Systems for Video Technology, 2008, 18(5): 620–632
https://doi.org/10.1109/TCSVT.2008.918844
53 Wang S, Ma S, Wang S, Zhao D, Gao W. Fast multi reference frame motion estimation for high efficiency video coding. In: Proceedings of IEEE International Conference on Image Processing. 2013, 2005–2009
https://doi.org/10.1109/ICIP.2013.6738413
54 Yang S H, Huang K S. HEVC fast reference picture selection. Electronics Letters, 2015, 51(25): 2109–2111
https://doi.org/10.1049/el.2015.3094
55 Pan Z, Jin P, Lei J, Zhang Y, Sun X, Kwong S. Fast reference frame selection based on content similarity for low complexity HEVC encoder. Journal of Visual Communication and Image Representation, 2016, 40: 516–524
https://doi.org/10.1016/j.jvcir.2016.07.018
56 Teng S W, Hang H M, Chen Y F. Fast mode decision algorithm for residual quadtree coding in HEVC. In: Proceedings of IEEE Visual Communications and Image Processing. 2011, 1–4
https://doi.org/10.1109/VCIP.2011.6116062
57 Shen L, Zhang Z, Zhang X, An P, Liu Z. Fast TU size decision algorithm for HEVC encoders using Bayesian theorem detection. Signal Processing: Image Communication, 2015, 32: 121–128
https://doi.org/10.1016/j.image.2015.01.008
58 Wu X, Wang H, Wei Z. Bayesian rule based fast TU depth decision algorithm for high efficiency video coding. In: Proceedings of IEEE Visual Communications and Image Processing. 2016, 1–4
https://doi.org/10.1109/VCIP.2016.7805500
59 Wang H, Kwong S. Prediction of zero quantized DCT coefficients in H.264/AVC using hadamard transformed information. IEEE Transactions on Circuits and Systems for Video Technology, 2008, 18(4): 510–515
https://doi.org/10.1109/TCSVT.2008.918553
60 Wang H, Kwong S. Hybrid model to detect zero quantized DCT coefficients in H.264. IEEE Transactions on Multimedia, 2007, 9(4): 728–735
https://doi.org/10.1109/TMM.2007.893336
61 Wang H, Du H, Wu J. Predicting zero coefficients for high efficiency video coding. In: Proceedings of IEEE International Conference on Multimedia and Expo. 2014, 1–6
https://doi.org/10.1109/ICME.2014.6890199
62 Wang H, Du H, Lin W, Kwong S, Au O C, Wu J, Wei Z. Early detection of all-zero 4 × 4 blocks in High Efficiency Video Coding. Journal of Visual Communication and Image Representation, 2014, 25(7): 1784–1790
https://doi.org/10.1016/j.jvcir.2014.08.007
63 Lee B, Jung J, Kim M. An all-zero block detection scheme for low-complexity HEVC encoders. IEEE Transactions on Multimedia, 2016, 18(7): 1257–1268
https://doi.org/10.1109/TMM.2016.2557075
64 Au O C, Li S, Zou R, Dai W, Sun L. Digital photo album compression based on global motion compensation and intra/inter prediction. In: Proceedings of International Conference on Audio, Language and Image Processing. 2012, 84–90
https://doi.org/10.1109/ICALIP.2012.6376591
65 Zou R, Au O C, Zhou G, Dai W, Hu W, Wan P. Personal photo album compression and management. In: Proceedings of IEEE International Symposium on Circuits and Systems. 2013, 1428–1431
66 Ling Y, Au O C, Zou R, Pang J, Yang H, Zheng A. Photo album compression by leveraging temporal-spatial correlations and HEVC. In: Proceedings of IEEE International Symposium on Circuits and Systems. 2014, 1917–1920
https://doi.org/10.1109/ISCAS.2014.6865535
67 Shi Z, Sun X, Wu F. Photo album compression for cloud storage using local features. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2014, 4(1): 17–28
https://doi.org/10.1109/JETCAS.2014.2298291
68 Wu H, Sun X, Yang J, Zeng W, Wu F. Lossless compression of JPEG coded photo collections. IEEE Transactions on Image Processing, 2016, 25(6): 2684–2696
https://doi.org/10.1109/TIP.2016.2551366
69 Vetro A, Wiegand T, Sullivan G J. Overview of the stereo and multiview video coding extensions of the H.264/MPEG-4 AVC standard. Proceedings of the IEEE, 2011, 99(4): 626–642.
https://doi.org/10.1109/JPROC.2010.2098830
70 Merkle P, Smolíc A, Müller K, Wiegand T. Efficient prediction structures for multiview video coding. IEEE Transactions on Circuits and Systems for Video Technology, 2007, 17(11): 1461–1473
https://doi.org/10.1109/TCSVT.2007.903665
71 Wang H, Ma M, Jiang Y G, Wei Z. A framework of video coding for compressing near-duplicate videos. In: Proceedings of International Conference on Multimedia Modeling. 2014, 518–528
https://doi.org/10.1007/978-3-319-04114-8_44
72 Wang H, Ma M, Tian T. Effectively compressing near-duplicate videos in a joint way. In: Proceedings of IEEE International Conference on Multimedia and Expo. 2015, 1–6
73 Bay H, Tuytelaars T, Gool L V. Surf: speeded up robust features. In: Proceedings of European Conference on Computer Vision. 2006, 404–417
https://doi.org/10.1007/11744023_32
74 Muja M, Lowe D G. Scalable nearest neighbor algorithms for high dimensional data. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(11): 2227–2240
https://doi.org/10.1109/TPAMI.2014.2321376
75 Fishler M A, Bolles R C. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, 1981, 24(6): 381–395
https://doi.org/10.1145/358669.358692
76 Wang H, Tian T, Ma M, Wu J. Joint compression of near-duplicate videos. IEEE Transactions on Multimedia, 2017, 19(5): 908–920
https://doi.org/10.1109/TMM.2016.2645398
77 Wu X, Ngo C W, Hauptmann A G, Tan H K. Real-time near-duplicate elimination for web video search with content and context. IEEE Transactions on Multimedia, 2009, 11(2): 196–207
https://doi.org/10.1109/TMM.2008.2009673
78 Wang H, Zhu F, Xiao B, Wang L, Jiang Y G. Gpu-based mapreduce for large-scale near-duplicate video retrieval. Multimedia Tools and Applications, 2015, 74(23): 10515–10534.
https://doi.org/10.1007/s11042-014-2185-x
79 Gao Y, Zhu C, Li S, Yang T. Temporal dependent rate-distortion optimization for low-delay hierarchical video coding. IEEE Transactions on Image Processing, 2017, 26(9): 4457–4470.
https://doi.org/10.1109/TIP.2017.2713598
80 Chen H, Zhang T, Sun M T, Saxena A, Budagavi M. Improving intra prediction in high-efficiency video coding. IEEE Transactions on Image Processing, 2016, 25(8): 3671–3682
https://doi.org/10.1109/TIP.2016.2573585
81 Lan C, Xu J, Shi G, Wu F. Variable block-sized signal dependent transform for video coding. IEEE Transactions on Circuits and Systems for Video Technology, 2017, DOI: 10.1109/TCSVT.2017.2689032
https://doi.org/10.1109/TCSVT.2017.2689032
82 Li L, Li H, Liu D, Li Z, Yang H, Lin S, Chen H, Wu F. An efficient four-parameter affine motion model for video coding. IEEE Transactions on Circuits and Systems for Video Technology, 2017, DOI: 10.1109/TCSVT.2017.2699919
https://doi.org/10.1109/TCSVT.2017.2699919
83 Ma S, Zhang X, Zhang J, Jia C, Wang S, Gao W. Nonlocal in-loop filter: the way toward next-generation video coding?. IEEE Multi Media, 2016, 23(2): 16–26
https://doi.org/10.1109/MMUL.2016.16
84 Chen J, Chen Y, Karczewicz M, Li X, Liu H, Zhang L, Zhao X. Coding tools investigation for next generation video coding. ITU-T SG16 Doc. COM16-C806, 2015
85 Karczewicz M, Chen J, Chien W J, Li X, Said A, Zhang L, Zhao X. Study of coding efficiency improvements beyond HEVC.MPEG Doc. m37102, 2015
86 An J, Huang H, Zhang K. Quadtree plus binary tree structure integration with JEM tools. Joint Video Exploration Team, JVET-B0023, 2016
87 Chen J, Chien W J, Karczewicz M, Li X, Liu H, Said A, Zhang L, Zhao X. Further improvements to HMKTA-1.0. ITU-T SG16/Q6 Doc. VCEG-AZ07, 2015
88 Alshina E, Alshin A, Min J H, Choi K, Saxena A, Budagavi M. Known tools performance investigation for next generation video coding. ITU-T SG16/Q6 Doc. VCEG-AZ05, 2015
89 Chien W J, Karczewicz M. Extension of advanced temporal motion vector predictor. ITU-T SG16/Q6 Doc. VCEG-AZ10, 2015
90 Choi K, Alshina E, Alshin A, Kim C. Information on coding efficiency improvements over HEVC for 4K content. MPEG Doc. m37043, 2015
91 Martin E. Saccadic suppression: a review and an analysis. Psychological Bulletin, 1974, 81(12): 899–917
https://doi.org/10.1037/h0037368
92 Itti L, Niebur E. A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(11): 1254–1259
https://doi.org/10.1109/34.730558
93 Gao D, Mahadevan V, Vasoncelos N. The discriminant centersurround hypothesis for bottom-up saliency. In: Proceedings of Advances in Neural Information Processing Systems. 2007, 497–504
94 Goferman S, Zelnik-Manor L, Tal A. Context-aware saliency detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(10): 1915–1926
https://doi.org/10.1109/TPAMI.2011.272
95 Imamoglu N, Lin W, Fang Y. A saliency detection model using lowlevel features based on wavelet transform. IEEE Transactions onMultimedia, 2013, 15(1): 96–105
96 Hadizadeh H, Bajic I V. Saliency-aware video compression. IEEE Transactions on Image Processing, 2014, 23(1): 19–33
https://doi.org/10.1109/TIP.2013.2282897
97 Li Y, Liao W, Huang J, He D, Chen Z. Saliency based perceptual HEVC. In: Proceedings of IEEE International Conference on Multimedia and Expo Workshops. 2014, 1–5
https://doi.org/10.1109/ICMEW.2014.6890644
98 Doulamis N, Doulamis A, Kalogeras D, Kollias S. Low bit-rate coding of image sequences using adaptive regions of interest. IEEE Transactions on Circuits and Systems for Video Technology, 1998, 8(8): 928–934
https://doi.org/10.1109/76.736718
99 Xu M, Deng X, Li S, Wang Z. Region-of-interest based conversational HEVC coding with hierarchical perception model of face. IEEE Journal of Selected Topics in Signal Processing, 2014, 8(3): 475–489
https://doi.org/10.1109/JSTSP.2014.2314864
100 Yang X, Lin W, Lu Z, Ong E, Yao S. Motion-compensated residue preprocessing in video coding based on just-noticeable-distortion profile. IEEE Transactions on Circuits and Systems for Video Technology, 2005, 15(6): 742–752
https://doi.org/10.1109/TCSVT.2005.848313
101 Liu A, Lin W, Paul M, Deng C, Zhang F. Just noticeable difference for images with decomposition model for separating edge and textured regions. IEEE Transactions on Circuits and Systems for Video Technology, 2010, 20(11): 1648–1652
https://doi.org/10.1109/TCSVT.2010.2087432
102 Wu J, Shi G, Lin W, Liu A, Qi F. Just noticeable difference estimation for images with free-energy principle. IEEE Transactions on Multimedia, 2013, 15(7): 1705–1710
https://doi.org/10.1109/TMM.2013.2268053
103 Wu J, Li L, Dong W, Shi G, Lin W, Kuo C C J. Enhanced just noticeable difference model for images with pattern complexity. IEEE Transactions on Image Processing, 2017, 26(6): 2682–2693
https://doi.org/10.1109/TIP.2017.2685682
104 Ahumada A, Peterson H. Luminance-model-based DCT quantization for color image compression. Proceedings of the SPIE, 1992, 1666: 365–374
105 Hontsch I, Karam L J. Adaptive image coding with perceptual distortion control. IEEE Transactions on Image Processing, 2002, 11(3): 213–222
https://doi.org/10.1109/83.988955
106 Wei Z, Ngan K N. Spatio-temporal just noticeable distortion profile for grey scale image/video in DCT domain. IEEE Transactions on Circuits and Systems for Video Technology, 2009, 19(3): 337–346
https://doi.org/10.1109/TCSVT.2009.2013518
107 Hu S, Wang H, Kuo C C J. A GMM-based stair quality model for human perceived JPEG images. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing. 2016, 1070–1074
https://doi.org/10.1109/ICASSP.2016.7471840
108 Jin L, Yuchieh L J, Hu S, Wang H, Wang P, Katsavounidis I, Aaron A, Kuo C C J. Statistical study on perceived JPEG image quality via MCL-JCI dataset construction and analysis. Electronic Imaging, 2016, 9: 1–9
https://doi.org/10.2352/ISSN.2470-1173.2016.13.IQSP-222
109 Chen Z, Guillemot C. Perceptually-friendly H.264/AVC video coding based on foveated just-noticeable-distortion model. IEEE Transactions on Circuits and Systems for Video Technology, 2010, 20(6): 806–819
https://doi.org/10.1109/TCSVT.2010.2045912
110 Luo Z, Song L, Zheng S, Ling N. H.264/advanced video control perceptual optimization coding based on JND-directed coefficient suppression. IEEE Transactions on Circuits and Systems for Video Technology, 2013, 23(6): 935–948
https://doi.org/10.1109/TCSVT.2013.2240919
111 Yang X K, Ling W S, Lu Z K, Ong E P, Yao S S. Just noticeable distortion model and its applications in video coding. Signal Processing: Image Communication, 2005, 20(7): 662–680
https://doi.org/10.1016/j.image.2005.04.001
112 Kim J, Bae S H, Kim M. An HEVC-compliant perceptual video coding scheme based on JND models for variable block-sized transform kernels. IEEE Transactions on Circuits and Systems for Video Technology, 2015, 25(11): 1786–1800
https://doi.org/10.1109/TCSVT.2015.2389491
113 Abdoli M, Henry F, Brault P, Duhamel P, Dufaux F. Intra prediction using in-loop residual coding for the post-HEVC standard. In: Proceedings of IEEE International Workshop on Multimedia Signal Processing. 2017, 1–6
https://doi.org/10.1109/MMSP.2017.8122241
114 Wang H, Fu J, Lin W, Hu S, Kuo C C J, Zuo L. Image quality assessment based on local linear lnformation and distortion-specific compensation. IEEE Transactions on Image Processing, 2017, 26(2): 915–926
https://doi.org/10.1109/TIP.2016.2639451
115 Wang T, Chen M, Chao H. A novel deep learning-based method of improving coding efficiency from the decoder-end for HEVC. In: Proceedings of Data Compression Conference. 2017, 410–419
https://doi.org/10.1109/DCC.2017.42
116 Li Y, Liu D, Li H, Li L, Wu F, Zhang H, Yang H. Convolutional neural network-based block up-sampling for intra frame coding. IEEE Transactions on Circuits and Systems for Video Technology, 2017, DOI: 10.1109/TCSVT.2017.2727682
https://doi.org/10.1109/TCSVT.2017.2727682
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed