Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front. Comput. Sci.    2021, Vol. 15 Issue (6) : 156903    https://doi.org/10.1007/s11704-020-9520-3
RESEARCH ARTICLE
Identification of differential brain regions in MCI progression via clustering-evolutionary weighted SVM ensemble algorithm
Xia-an BI1,2(), Yiming XIE1,2, Hao WU1,2, Luyun XU3()
1. Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing, Hunan Normal University, Changsha 410081, China
2. College of Information Science and Engineering, Hunan Normal University, Changsha 410081, China
3. Business School of Hunan Normal University, Changsha 410081, China
 Download: PDF(625 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Mild cognitive impairment (MCI) as the potential sign of serious cognitive decline could be divided into two stages, i.e., late MCI (LMCI) and early MCI (EMCI). Although the different cognitive states in the MCI progression have been clinically defined, effective and accurate identification of differences in neuroimaging data between these stages still needs to be further studied. In this paper, a new method of clustering-evolutionary weighted support vector machine ensemble (CEWSVME) is presented to investigate the alterations from cognitively normal (CN) to EMCI to LMCI. The CEWSVME mainly includes two steps. The first step is to build multiple SVM classifiers by randomly selecting samples and features. The second step is to introduce the idea of clustering evolution to eliminate inefficient and highly similar SVMs, thereby improving the final classification performances. Additionally, we extracted the optimal features to detect the differential brain regions in MCI progression, and confirmed that these differential brain regions changed dynamically with the development of MCI. More exactly, this study found that some brain regions only have durative effects on MCI progression, such as parahippocampal gyrus, posterior cingulate gyrus and amygdala, while the superior temporal gyrus and the middle temporal gyrus have periodic effects on the progression. Our work contributes to understanding the pathogenesis of MCI and provide the guidance for its timely diagnosis.

Keywords machine learning      MCI progression      optimal feature extraction      differential brain regions      functional magnetic resonance imaging     
Corresponding Author(s): Xia-an BI,Luyun XU   
Issue Date: 27 January 2021
 Cite this article:   
Xia-an BI,Yiming XIE,Hao WU, et al. Identification of differential brain regions in MCI progression via clustering-evolutionary weighted SVM ensemble algorithm[J]. Front. Comput. Sci., 2021, 15(6): 156903.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-020-9520-3
https://academic.hep.com.cn/fcs/EN/Y2021/V15/I6/156903
1 D S Sherman, J Mauser, M Nuno, D Sherzai. The efficacy of cognitive intervention in mild cognitive impairment (MCI): a meta-analysis of outcomes on neuropsychological measures. Neuropsychology Review, 2017, 27(4): 440–484
https://doi.org/10.1007/s11065-017-9363-3
2 J Q Li, L Tan, H F Wang, M S Tan, L Tan, W Xu, Q F Zhao, J Wang, T Jiang, J T Yu. Risk factors for predicting progression from mild cognitive impairment to alzheimer’s disease: a systematic review and meta-analysis of cohort studies. Journal of Neurology, Neurosurgery & Psychiatry, 2016, 87(5): 476–484
https://doi.org/10.1136/jnnp-2014-310095
3 H A Yi, C Möller, N Dieleman, F H Bouwman, F Barkhof, P Scheltens, W M van der Flier, H Vrenken. Relation between subcortical grey matter atrophy and conversion from mild cognitive impairment to alzheimer’s disease. Journal of Neurology, Neurosurgery & Psychiatry, 2016, 87(4): 425–432
https://doi.org/10.1136/jnnp-2014-309105
4 J Ramírez, J M Górriz, A Ortiz, F J Martínez-Murcia, F Segovia, D Salas-Gonzalez, D Castillo-Barnes, I A Illán, C G Puntonet. Ensemble of random forests one vs. rest classifiers for MCI and ad prediction using anova cortical and subcortical feature selection and partial least squares. Journal of Neuroscience Methods, 2018, 302: 47–57
https://doi.org/10.1016/j.jneumeth.2017.12.005
5 L F ten Brinke, N Bolandzadeh, L S Nagamatsu, C L Hsu, J C Davis, K Miran-Khan, T Liu-Ambrose. Aerobic exercise increases hippocampal volume in older women with probable mild cognitive impairment: a 6- month randomised controlled trial. British Journal of Sports Medicine, 2015, 49(4): 248–254
https://doi.org/10.1136/bjsports-2013-093184
6 G Spulber, A Simmons, J S Muehlboeck, P Mecocci, B Vellas, M Tsolaki, I Kłoszewska, H Soininen, C Spenger, S Lovestone, L O Wahlund, E Westman, et al. An MRI-based index to measure the severity of alzheimer’s disease-like structural pattern in subjects with mild cognitive impairment. Journal of Internal Medicine, 2013, 273(4): 396–409
https://doi.org/10.1111/joim.12028
7 A P Mecca, H R Michalak, JW McDonald, E C Kemp, E A Pugh, M L Becker, M C Mecca, C H van Dyck. Sleep disturbance and the risk of cognitive decline or clinical conversion in the adni cohort. Dementia and Geriatric Cognitive Disorders, 2018, 45(3–4): 232–242
https://doi.org/10.1159/000488671
8 W J Jagust, S M Landau, R A Koeppe, E M Reiman, K Chen, C A Mathis, J C Price, N L Foster, A Y Wang. The alzheimer’s disease neuroimaging initiative 2 pet core: 2015. Alzheimer’s & Dementia, 2015, 11(7): 757–771
https://doi.org/10.1016/j.jalz.2015.05.001
9 E S Lee, K Yoo, Y B Lee, J Chung, J E Lim, B Yoon, Y Jeong. Default mode network functional connectivity in early and late mild cognitive impairment. Alzheimer Disease & Associated Disorders, 2016, 30(4): 289–296
https://doi.org/10.1097/WAD.0000000000000143
10 S Cai, T Chong, Y Peng, W Shen, J Li, K M von Deneen, L Huang. Altered functional brain networks in amnestic mild cognitive impairment: a resting-state fMRI study. Brain Imaging and Behavior, 2017, 11(3): 619–631
https://doi.org/10.1007/s11682-016-9539-0
11 F Fei, B Jie, D Zhang. Frequent and discriminative subnetwork mining for mild cognitive impairment classification. Brain Connectivity, 2014, 4(5): 347–360
https://doi.org/10.1089/brain.2013.0214
12 X A Bi, Q Xu, X Luo, Q Sun, Z Wang. Weighted random support vector machine clusters analysis of resting-state fMRI in mild cognitive impairment. Frontiers in Psychiatry, 2018, 9: 340
https://doi.org/10.3389/fpsyt.2018.00340
13 F McKenna, B B Koo, R Killiany, et al. Comparison of apoe-related brain connectivity differences in early MCI and normal aging populations: an fMRI study. Brain Imaging and Behavior, 2016, 10(4): 970–983
https://doi.org/10.1007/s11682-015-9451-z
14 C Y Wee, S Yang, P T Yap, D Shen, et al. Sparse temporally dynamic resting-state functional connectivity networks for early MCI identification. Brain Imaging and Behavior, 2016, 10(2): 342–356
https://doi.org/10.1007/s11682-015-9408-2
15 B Jie, M Liu, D Shen. Integration of temporal and spatial properties of dynamic connectivity networks for automatic diagnosis of brain disease. Medical Image Analysis, 2018, 47: 81–94
https://doi.org/10.1016/j.media.2018.03.013
16 K A Grajski, S L Bressler. Differential medial temporal lobe and defaultmode network functional connectivity and morphometric changes in alzheimer’s disease. NeuroImage: Clinical, 2019, 23: 101860
https://doi.org/10.1016/j.nicl.2019.101860
17 M Daianu, N Jahanshad, T M Nir, Jr C R Jack, M W Weiner, M A Bernstein, P M Thompson, et al. Rich club analysis in the alzheimer’s disease connectome reveals a relatively undisturbed structural core network. Human Brain Mapping, 2015, 36(8): 3087–3103
https://doi.org/10.1002/hbm.22830
18 B Jie, M Liu, D Zhang, D Shen. Sub-network kernels for measuring similarity of brain connectivity networks in disease diagnosis. IEEE Transactions on Image Processing, 2018, 27(5): 2340–2353
https://doi.org/10.1109/TIP.2018.2799706
19 X Ding, R J Charnigo, F A Schmitt, R J Kryscio, E L Abner, et al. Evaluating trajectories of episodic memory in normal cognition and mild cognitive impairment: results from adni. PLoS ONE, 2019, 14(2): e0212435
https://doi.org/10.1371/journal.pone.0212435
20 V Schetinin, L Jakaite, N Nyah, D Novakovic, W Krzanowski. Feature extraction with gmdh-type neural networks for eeg-based person identification. International Journal of Neural Systems, 2017, 28(6): 1750064
https://doi.org/10.1142/S0129065717500642
21 L Du, K Liu, L Zhu, X Yao, S L Risacher, L Guo, A J Saykin, L Shen, et al. Identifying progressive imaging genetic patterns via multi-task sparse canonical correlation analysis: a longitudinal study of the adni cohort. Bioinformatics (Oxford, England), 2019, 35(14): i474–i483
https://doi.org/10.1093/bioinformatics/btz320
22 K Yan, Y Xu, X Fang, C Zheng, B Liu. Protein fold recognition based on sparse representation based classification. Artificial Intelligence in Medicine, 2017, 79: 1–8
https://doi.org/10.1016/j.artmed.2017.03.006
23 D Wu, S J Zheng, X P Zhang, C A Yuan, F Cheng, Y Zhao, Y J Lin, Z Q Zhao, Y L Jiang, D S Huang. Deep learning-based methods for person re-identification: a comprehensive review. Neurocomputing, 2019, 337: 354–371
https://doi.org/10.1016/j.neucom.2019.01.079
24 Q Jin, Z Meng, T D Pham, Q Chen, L Wei, R Su. Dunet: a deformable network for retinal vessel segmentation. Knowledge-Based Systems, 2019, 178: 149–162
https://doi.org/10.1016/j.knosys.2019.04.025
25 R Su, X Liu, L Wei, Q Zou. Deep-resp-forest: a deep forest model to predict anti-cancer drug response. Methods, 2019, 166: 91–102
https://doi.org/10.1016/j.ymeth.2019.02.009
26 X Zeng, S Yuan, X Huang, Q Zou. Identification of cytokine via an improved genetic algorithm. Frontiers of Computer Science, 2015, 9(4): 643–651
https://doi.org/10.1007/s11704-014-4089-3
27 X Chen, C C Zhu, J Yin. Ensemble of decision tree reveals potential mirna-disease associations. PLoS Computational Biology, 2019, 15(7): e1007209
https://doi.org/10.1371/journal.pcbi.1007209
28 J Peng, W Hui, Q Li, B Chen, J Hao, Q Jiang, X Shang, Z Wei. A learningbased framework for mirna-disease association identification using neural networks. Bioinformatics (Oxford, England), 2019, 35(21): 4364–4371
https://doi.org/10.1093/bioinformatics/btz254
29 H Cui, X Zhang. Alignment-free supervised classification of metagenomes by recursive SVM. BMC Genomics, 2013, 14: 641
https://doi.org/10.1186/1471-2164-14-641
30 G Prasad, S H Joshi, T M Nir, A W Toga, P M Thompson. Brain connectivity and novel network measures for alzheimer’s disease classification. Neurobiology of Aging, 2015, 36: S121–S131
https://doi.org/10.1016/j.neurobiolaging.2014.04.037
31 A Khazaee, A Ebrahimzadeh, A Babajani-Feremi. Application of advanced machine learning methods on resting-state fMRI network for identification of mild cognitive impairment and alzheimer’s disease. Brain Imaging and Behavior, 2016, 10(3): 799–817
https://doi.org/10.1007/s11682-015-9448-7
32 C Echávarri, P Aalten, H B M Uylings, H I L Jacobs, P J Visser, E H BM Gronenschild, F R J Verhey, S Burgmans. Atrophy in the parahippocampal gyrus as an early biomarker of alzheimer’s disease. Brain Structure and Function, 2011, 215(3): 265–271
https://doi.org/10.1007/s00429-010-0283-8
33 L L Chao, S G Mueller, S T Buckley, K Peek, S Raptentsetseng, J Elman, K Yaffe, B L Miller, J H Kramer, C Madison, D Mungas, N Schuff, M W Weiner. Evidence of neurodegeneration in brains of older adults who do not yet fulfill MCI criteria. Neurobiology of Aging, 2010, 31(3): 368–377
https://doi.org/10.1016/j.neurobiolaging.2008.05.004
34 S M Kim, M J Kim, H Y Rhee, C W Ryu, E J Kim, E T Petersen, G H Jahng. Regional cerebral perfusion in patients with alzheimer’s disease and mild cognitive impairment: effect of apoe epsilon4 allele. Neuroradiology, 2013, 55(1): 25–34
https://doi.org/10.1007/s00234-012-1077-x
35 A M Ward, A P Schultz, W Huijbers, K R A Van Dijk, T Hedden, R A Sperling. The parahippocampal gyrus links the default-mode cortical network with the medial temporal lobe memory system. Human Brain Mapping, 2014, 35(3): 1061–1073
https://doi.org/10.1002/hbm.22234
36 D Luck, J M Danion, C Marrer, B T Pham, D Gounot, J Foucher. The right parahippocampal gyrus contributes to the formation and maintenance of bound information in working memory. Brain and Cognition, 2010, 72(2): 255–263
https://doi.org/10.1016/j.bandc.2009.09.009
37 J N Browndyke, K Giovanello, J Petrella, K Hayden, O Chiba-Falek, K A Tucker, J R Burke, K A Welsh-Bohmer. Phenotypic regional functional imaging patterns during memory encoding in mild cognitive impairment and alzheimer’s disease. Alzheimer’s & Dementia, 2013, 9(3): 284–294
https://doi.org/10.1016/j.jalz.2011.12.006
38 K Kantarci, C R Jack, Y C Xu, N G Campeau, P C O’Brien, G E Smith, R J Ivnik, B F Boeve, E Kokmen, E G Tangalos, R C Petersen. Regional metabolic patterns in mild cognitive impairment and alzheimer’s disease: a 1h mrs study. Neurology, 2000, 55(2): 210–217
https://doi.org/10.1212/WNL.55.2.210
39 V Camus, P Payoux, L Barré, B Desgranges, T Voisin, C Tauber, R La Joie, M Tafani, C Hommet, G Chételat, K Mondon, V de La Sayette, J P Cottier, E Beaufils, M J Ribeiro, V Gissot, E Vierron, J Vercouillie, B Vellas, F Eustache, D Guilloteau. Using pet with 18f-av-45 (florbetapir) to quantify brain amyloid load in a clinical environment. European Journal of Nuclear Medicine and Molecular Imaging, 2012, 39(4): 621–631
https://doi.org/10.1007/s00259-011-2021-8
40 M Bailly, C Destrieux, C Hommet, K Mondon, J P Cottier, E Beaufils, E Vierron, J Vercouillie, M Ibazizene, T Voisin, P Payoux, L Barré, V Camus, D Guilloteau, MJ Ribeiro. Precuneus and cingulate cortex atrophy and hypometabolism in patients with alzheimer&’s disease and mild cognitive impairment: MRI and 18f-fdg pet quantitative analysis using freesurfer. BioMed Research International, 2015, 2015: 583931
https://doi.org/10.1155/2015/583931
41 S Cai, L Huang, J Zou, L Jing, B Zhai, G Ji, K M von Deneen, J Ren, A Ren, et al. Changes in thalamic connectivity in the early and late stages of amnestic mild cognitive impairment: a resting-state functional magnetic resonance study from ADNI. PLoS ONE, 2015, 10(2): e0115573
https://doi.org/10.1371/journal.pone.0115573
42 H Li, S Fang, J A Contreras, J D West, S L Risacher, Y Wang, O Sporns, A J Saykin, J Goñi, L Shen, et al. Brain explorer for connectomic analysis. Brain Informatics, 2017, 4(4): 253–269
https://doi.org/10.1007/s40708-017-0071-9
43 J Xiang, H Guo, R Cao, H Liang, J Chen. An abnormal resting-state functional brain network indicates progression towards alzheimer’s disease. Neural Regeneration Research, 2013, 8(30): 2789–2799
44 H Wei, M Kong, C Zhang, L Guan, M Ba, et al. The structural MRI markers and cognitive decline in prodromal alzheimer’s disease: a 2-year longitudinal study. Quantitative Imaging in Medicine and Surgery, 2018, 8(10): 1004–1019
https://doi.org/10.21037/qims.2018.10.08
45 A S Ribeiro, L M Lacerda, N A d Silva, H A Ferreira. Multimodal imaging of brain connectivity using the mibca toolbox: preliminary application to alzheimer’s disease. IEEE Transactions on Nuclear Science, 2015, 62(3): 604–611
https://doi.org/10.1109/TNS.2015.2417764
[1] Highlights Download
[1] Zhen SONG, Yu GU, Zhigang WANG, Ge YU. DRPS: efficient disk-resident parameter servers for distributed machine learning[J]. Front. Comput. Sci., 2022, 16(4): 164321-.
[2] Yu OU, Lang LI. Side-channel analysis attacks based on deep learning network[J]. Front. Comput. Sci., 2022, 16(2): 162303-.
[3] Suyu MEI. A framework combines supervised learning and dense subgraphs discovery to predict protein complexes[J]. Front. Comput. Sci., 2022, 16(1): 161901-.
[4] Xinyu TONG, Ziao YU, Xiaohua TIAN, Houdong GE, Xinbing WANG. Improving accuracy of automatic optical inspection with machine learning[J]. Front. Comput. Sci., 2022, 16(1): 161310-.
[5] Yi REN, Ning XU, Miaogen LING, Xin GENG. Label distribution for multimodal machine learning[J]. Front. Comput. Sci., 2022, 16(1): 161306-.
[6] Xiaobing SUN, Tianchi ZHOU, Rongcun WANG, Yucong DUAN, Lili BO, Jianming CHANG. Experience report: investigating bug fixes in machine learning frameworks/libraries[J]. Front. Comput. Sci., 2021, 15(6): 156212-.
[7] Yan-Ping SUN, Min-Ling ZHANG. Compositional metric learning for multi-label classification[J]. Front. Comput. Sci., 2021, 15(5): 155320-.
[8] Jian SUN, Pu-Feng DU. Predicting protein subchloroplast locations: the 10th anniversary[J]. Front. Comput. Sci., 2021, 15(2): 152901-.
[9] Syed Farooq ALI, Muhammad Aamir KHAN, Ahmed Sohail ASLAM. Fingerprint matching, spoof and liveness detection: classification and literature review[J]. Front. Comput. Sci., 2021, 15(1): 151310-.
[10] Xu-Ying LIU, Sheng-Tao WANG, Min-Ling ZHANG. Transfer synthetic over-sampling for class-imbalance learning with limited minority class data[J]. Front. Comput. Sci., 2019, 13(5): 996-1009.
[11] Yu-Feng LI, De-Ming LIANG. Safe semi-supervised learning: a brief introduction[J]. Front. Comput. Sci., 2019, 13(4): 669-676.
[12] Wenhao ZHENG, Hongyu ZHOU, Ming LI, Jianxin WU. CodeAttention: translating source code to comments by exploiting the code constructs[J]. Front. Comput. Sci., 2019, 13(3): 565-578.
[13] Hao SHAO. Query by diverse committee in transfer active learning[J]. Front. Comput. Sci., 2019, 13(2): 280-291.
[14] Qingying SUN, Zhongqing WANG, Shoushan LI, Qiaoming ZHU, Guodong ZHOU. Stance detection via sentiment information and neural network model[J]. Front. Comput. Sci., 2019, 13(1): 127-138.
[15] Ruochen HUANG, Xin WEI, Liang ZHOU, Chaoping LV, Hao MENG, Jiefeng JIN. A survey of data-driven approach on multimedia QoE evaluation[J]. Front. Comput. Sci., 2018, 12(6): 1060-1075.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed