Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front. Comput. Sci.    2022, Vol. 16 Issue (6) : 166614    https://doi.org/10.1007/s11704-021-0261-8
RESEARCH ARTICLE
Graph convolution machine for context-aware recommender system
Jiancan WU1, Xiangnan HE1(), Xiang WANG2, Qifan WANG3, Weijian CHEN1, Jianxun LIAN4, Xing XIE4
1. School of Information Science and Technology, University of Science and Technology of China, Hefei 230026, China
2. 5 Prince George’s Park, National University of Singapore, Singapore 118404, Singapore
3. Google Research, Mountain View, CA 94043, USA
4. Microsoft Research Asia, Beijing 100190, China
 Download: PDF(13815 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The latest advance in recommendation shows that better user and item representations can be learned via performing graph convolutions on the user-item interaction graph. However, such finding is mostly restricted to the collaborative filtering (CF) scenario, where the interaction contexts are not available. In this work, we extend the advantages of graph convolutions to context-aware recommender system (CARS, which represents a generic type of models that can handle various side information). We propose Graph Convolution Machine (GCM), an end-to-end framework that consists of three components: an encoder, graph convolution (GC) layers, and a decoder. The encoder projects users, items, and contexts into embedding vectors, which are passed to the GC layers that refine user and item embeddings with context-aware graph convolutions on the user-item graph. The decoder digests the refined embeddings to output the prediction score by considering the interactions among user, item, and context embeddings. We conduct experiments on three real-world datasets from Yelp and Amazon, validating the effectiveness of GCM and the benefits of performing graph convolutions for CARS.

Keywords context-aware recommender systems      graph convolution     
Corresponding Author(s): Xiangnan HE   
Just Accepted Date: 25 May 2021   Issue Date: 12 January 2022
 Cite this article:   
Jiancan WU,Xiangnan HE,Xiang WANG, et al. Graph convolution machine for context-aware recommender system[J]. Front. Comput. Sci., 2022, 16(6): 166614.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-021-0261-8
https://academic.hep.com.cn/fcs/EN/Y2022/V16/I6/166614
Fig.1  The data used for building a CARS. The mixture data of interaction tensor and user/item/context feature matrices are converted to an attributed user-item bipartite graph without loss of fidelity
Fig.2  The graph convolution machine model
Model FM GCM GIN xDeepFM Convolutional FM
Time/s 8.51 14.93 35.45 365.82 2354.25
Tab.1  Model inference time of evaluating 1,000 Yelp-OH users (14 million interactions and 10 nonzero features per interaction)
Dataset Yelp-NC Yelp-OH Amazon-book
#User 6,336 5,170 44,709
#Item 13,003 12,997 46,831
#Instance 185,408 143,884 1,174,785
#User Feature 24 24 ?
#Item Feature 68 213 24,816
#Context Feature 13,209 13,347 46,900
Tab.2  Statistics of the datasets. We omit the ID feature when counting the number of user and item features
Yelp-NC Yelp-OH Amazon-book
HR NDCG HR NDCG HR NDCG
@10 @50 @10 @50 @10 @50 @10 @50 @10 @50 @10 @50
MF 0.0384 0.1173 0.0175 0.0341 0.0429 0.1261 0.0206 0.0383 0.0402 0.1243 0.0203 0.0382
LightGCN 0.0499 0.1394 0.0241 0.0431 0.0518 0.1520 0.0249 0.0461 0.0543 0.1466 0.0274 0.0473
FM 0.0739 0.1804 0.0396 0.0624 0.1959 0.4201 0.1049 0.1538 0.0587 0.1477 0.0323 0.0514
NFM 0.0824 0.2110 0.0419 0.0695 0.2248 0.4836 0.1161 0.1725 0.0808 0.1954 0.0444 0.0692
xDeepFM 0.0851 0.2086 0.0458 0.0723 0.2296 0.4799 0.1218 0.1762 0.0886 0.2119 0.0481 0.0748
GIN 0.0866 0.2175 0.0449 0.0722 0.2304 0.4965 0.1238 0.1818 0.0939 0.2189 0.0502 0.0774
GCM 0.1046 0.2421 0.0557 0.0854 0.2648 0.5166 0.1457 0.2008 0.0968 0.2232 0.0536 0.0810
Improv./ % 20.78 11.31 21.62 18.12 14.93 4.05 17.69 10.45 3.08 1.96 6.77 4.65
p-value 3.35e?9 4.37e?7 6.75e?10 5.91e?10 5.36e?12 9.10e?6 8.22e?9 2.45e?8 1.86e?4 3.41e?4 1.70e?3 1.05e?3
Tab.3  Overall performance comparison. The bold indicates the best result, while the second-best performance is underlined
Fig.3  The impact of depth and propagation rule in GC. (a) Yelp-NC; (b) Yelp-OH
Yelp-NC Yelp-OH
HR@10 NDCG@10 HR@10 NDCG@10
GCM 0.1046 0.0557 0.2648 0.1457
GCM-L1 0.0810 0.0421 0.2373 0.1246
GCM-sym 0.0994 0.0527 0.2507 0.1383
GCM-APC 0.0947 0.0497 0.2321 0.1265
GCM-MLP 0.0892 0.0458 0.2263 0.1211
GCM-MF 0.0497 0.0253 0.0520 0.0251
Tab.4  The variants of GCM with different normalization terms and decoders
Fig.4  Performances with respect to item popularity. (a) Yelp-NC; (b) Yelp-OH
1 X He, L Liao, H Zhang, L Nie, X Hu, T S Chua. Neural collaborative filtering. In: Proceedings of the 26th International Conference on World Wide Web. 2017, 173– 182
2 S Rendle, C Freudenthaler, Z Gantner, L Schmidt-Thieme. BPR: Bayesian personalized ranking from implicit feedback. In: Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence. 2009, 452– 461
3 X Wang, X He, M Wang, F Feng, T Chua. Neural graph collaborative filtering. In: Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. 2019, 165– 174
4 T N Kipf, M Welling. Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations. 2017
5 P Veličković, G Cucurull, A Casanova, A Romero, P Liò, Y Bengio. Graph attention networks. In: Proceedings of the 6th International Conference on Learning Representations. 2018
6 Y Wei, X Wang, L Nie, X He, R Hong, T Chua. MMGCN: multi-modal graph convolution network for personalized recommendation of micro-video. In: Proceedings of the 27th ACM International Conference on Multimedia. 2019, 1437−1445
7 L Wu, P Sun, Y Fu, R Hong, X Wang, M Wang. A neural influence diffusion model for social recommendation. In: Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. 2019, 235– 244
8 L Zheng, C T Lu, F Jiang, J Zhang, P S Yu. Spectral collaborative filtering. In: Proceedings of the 12th ACM Conference on Recommender Systems. 2018, 311– 319
9 Y Shi , M Larson , A Hanjalic . Collaborative filtering beyond the user-item matrix: a survey of the state of the art and future challenges. ACM Computing Surveys, 2014, 47( 1): 1– 45
10 A Karatzoglou, X Amatriain, L Baltrunas, N Oliver. Multiverse recommendation: n-dimensional tensor factorization for context-aware collaborative filtering. In: Proceedings of the 2010 ACM Conference on Recommender Systems. 2010, 79– 86
11 S Rendle. Factorization machines. In: Proceedings of the 10th IEEE International Conference on Data Mining. 2010, 995– 1000
12 Cheng H T, Koc L, Harmsen J, Shaked T, Chandra T, Aradhye H, Anderson G, Corrado G, Chai W, Ispir M, et al. Wide & deep learning for recommender systems. In: Proceedings of the 1st Workshop on Deep Learning for Recommender Systems. 2016, 7–10
13 Y Shan, T R Hoens, J Jiao, H Wang, D Yu, J Mao. Deep crossing: web-scale modeling without manually crafted combinatorial features. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2016, 255– 262
14 X He, T Chua. Neural factorization machines for sparse predictive analytics. In: Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval. 2017, 355– 364
15 J Xiao, H Ye, X He, H Zhang, F Wu, T Chua. Attentional factorization machines: learning the weight of feature interactions via attention networks. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence. 2017, 3119−3125
16 J Lian, X Zhou, F Zhang, Z Chen, X Xie, G Sun. xdeepfm: combining explicit and implicit feature interactions for recommender systems. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2018, 1754−1763
17 X Xin, B Chen, X He, D Wang, Y Ding, J Jose. CFM: convolutional factorization machines for context-aware recommendation. In: Proceedings of the 28th International Joint Conference on Artificial Intelligence. 2019, 3926−3932
18 S Rendle, Z Gantner, C Freudenthaler, L Schmidt-Thieme. Fast context-aware recommendations with factorization machines. In: Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval. 2011, 635– 644
19 H Guo, R Tang, Y Ye, Z Li, X He. Deepfm: a factorization-machine based neural network for CTR prediction. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence. 2017, 1725-1731
20 Wang R, Fu B, Fu G, Wang M. Deep & cross network for ad click predictions. In: Proceedings of the ADKDD’17. 2017, 1–7
21 Y Juan, Y Zhuang, W Chin, C Lin. Field-aware factorization machines for CTR prediction. In: Proceedings of the 10th ACM Conference on Recommender Systems. 2016, 43– 50
22 Liu B, Tang R, Chen Y, Yu J, Guo H, Zhang Y. Feature generation by convolutional neural network for clickthrough rate prediction. In: Proceedings of the Web Conference. 2019, 1119–1129
23 W Liu, R Tang, J Li, J Yu, H Guo, X He, S Zhang. Fieldaware probabilistic embedding neural network for CTR prediction. In: Proceedings of the 12th ACM Conference on Recommender Systems. 2018, 412– 416
24 Y Qu, B Fang, W Zhang, R Tang, M Niu, H Guo, Y Yu, X He. Product-based neural networks for user response prediction over multi-field categorical data. ACM Transactions on Information Systems, 2019, 37(1): 1– 35
25 W L Hamilton, R Ying, J Leskovec. Inductive representation learning on large graphs. In: Proceedings of the 31st International Conference on Neural Information Processing. 2017
26 L Gong, Q Cheng. Exploiting edge features for graph neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019, 9211−9219
27 M Zhang, Y Chen. Link prediction based on graph neural networks. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems. 2018, 5171−5181
28 K Xu, W Hu, J Leskovec, S Jegelka. How powerful are graph neural networks? In: Proceedings of the 7th International Conference on Learning Representations. 2019
29 R Berg, T N Kipf, M Welling. Graph convolutional matrix completion. 2017, arXiv preprint arXiv: 1706.02263
30 R Ying, R He, K Chen, P Eksombatchai, W L Hamilton, J Leskovec. Graph convolutional neural networks for web-scale recommender systems. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2018, 974– 983
31 Z Li, Z Cui, S Wu, X Zhang, L Wang. Fi-gnn: modeling feature interactions via graph neural networks for ctr prediction. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management. 2019, 539– 548
32 F Li, Z Chen, P Wang, Y Ren, D Zhang, X Zhu. Graph intention network for click-through rate prediction in sponsored search. In: Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. 2019, 961– 964
33 W Wang, W Zhang, S Liu, Q Liu, B Zhang, L Lin, H Zha. Beyond clicks: modeling multi-relational item graph for session-based target behavior prediction. In: Proceedings of the Web Conference. 2020, 3056−3062
34 W Fan, Y Ma, Q Li, Y He, Y E Zhao, J Tang, D Yin. Graph neural networks for social recommendation. In: Proceedings of the Web Conference. 2019, 417– 426
35 W Song, Z Xiao, Y Wang, L Charlin, M Zhang, J Tang. Session-based social recommendation via dynamic graph attention networks. In: Proceedings of the 12th ACM International Conference on Web Search and Data Mining. 2019, 555– 563
36 S Wu, Y Tang, Y Zhu, L Wang, X Xie, T Tan. Sessionbased recommendation with graph neural networks. In: Proceedings of the 33rd AAAI Conference on Artificial Intelligence. 2019, 346– 353
37 Y Cao, X Wang, X He, Z Hu, T Chua. Unifying knowledge graph learning and recommendation: towards a better understanding of user preferences. In: Proceedings of the 2019 World Wide Web Conference. 2019, 151– 161
38 X Wang, X He, Y Cao, M Liu, T Chua. KGAT: knowledge graph attention network for recommendation. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2019, 950– 958
39 L Mei, P Ren, Z Chen, L Nie, J Ma, J Y Nie. An attentive interaction network for context-aware recommendations. In: Proceedings of the 27th ACM International Conference on Information and Knowledge Management. 2018, 157– 166
40 C Wu, F Wu, T Qi, S Ge, Y Huang, X Xie. Reviews meet graphs: enhancing user and item representations for recommendation with hierarchical attentive graph neural network. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. 2019, 4886−4895
41 D P Kingma, J Ba. Adam: a method for stochastic optimization. In: Proceedings of the 3rd International Conference on Learning Representations. 2015
42 Y Koren , R Bell , C Volinsky . Matrix factorization techniques for recommender systems. Computer, 2009, 42( 8): 30– 37
43 X He, K Deng, X Wang, Y Li, Y Zhang, M Wang. Lightgcn: simplifying and powering graph convolution network for recommendation. In: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. 2020
44 S Rendle, W Krichene, L Zhang, J R Anderson. Neural collaborative filtering vs. matrix factorization revisited. In: Proceedings of the 14th ACM Conference on Recommender Systems. 2020, 240– 248
45 A Beutel, P Covington, S Jain, C Xu, J Li, V Gatto, E H Chi. Latent cross: making use of context in recurrent recommender systems. In: Proceedings of the 11th ACM International Conference on Web Search and Data Mining. 2018, 46– 54
46 X Wang, X He, F Feng, L Nie, T S Chua. Tem: treeenhanced embedding model for explainable recommendation. In: Proceedings of the 2018 World Wide Web Conference. 2018, 1543−1552
47 J Ma, P Cui, K Kuang, X Wang, W Zhu. Disentangled graph convolutional networks. In: Proceedings of the 36th International Conference on Machine Learning. 2019, 4212-4221
[1] Yufei ZENG, Zhixin LI, Zhenbin CHEN, Huifang MA. Aspect-level sentiment analysis based on semantic heterogeneous graph convolutional network[J]. Front. Comput. Sci., 2023, 17(6): 176340-.
[2] Yi ZHONG, Jia-Hui PAN, Haoxin LI, Wei-Shi ZHENG. Weakly supervised action anticipation without object annotations[J]. Front. Comput. Sci., 2023, 17(2): 172313-.
[3] Qianchen YU, Zhiwen YU, Zhu WANG, Xiaofeng WANG, Yongzhi WANG. Estimating posterior inference quality of the relational infinite latent feature model for overlapping community detection[J]. Front. Comput. Sci., 2020, 14(6): 146323-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed