Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front. Comput. Sci.    2022, Vol. 16 Issue (2) : 162615    https://doi.org/10.1007/s11704-022-1184-8
LETTER
TransRec++: Translation-based sequential recommendation with heterogeneous feedback
Zhuo-Xin ZHAN1,2, Ming-Kai HE1,2, Wei-Ke PAN1,2(), Zhong MING1,2
1. National Engineering Laboratory for Big Data System Computing Technology, Shenzhen University, Shenzhen 518060, China
2. College of Computer Science and Software Engineering, Shenzhen University, Shenzhen 518060, China
 Download: PDF(1048 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Corresponding Author(s): Wei-Ke PAN   
Just Accepted Date: 29 October 2021   Issue Date: 01 March 2022
 Cite this article:   
Zhuo-Xin ZHAN,Ming-Kai HE,Wei-Ke PAN, et al. TransRec++: Translation-based sequential recommendation with heterogeneous feedback[J]. Front. Comput. Sci., 2022, 16(2): 162615.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-022-1184-8
https://academic.hep.com.cn/fcs/EN/Y2022/V16/I2/162615
Fig.1  Illustration of our TransRec++, which first embeds items into vectors in a transition space and then learns user-specific behavior transition vectors with different orders 1?L
Fig.2  
UB Tmall
HR@10 NDCG@10 HR@10 NDCG@10
RBPR [2] 0.0303 0.0159 0.0156 0.0075
RoToR [3] 0.0080 0.0043 0.0313 0.0161
FPMC [4] 0.0467 0.0249 0.0352 0.0191
Fossil [5] 0.0508 0.0270 0.0437 0.0241
TransRec [1] 0.0589 0.0342 0.0374 0.0325
TransRec++ 0.0661 0.0413 0.0593 0.0377
Tab.1  Main results on UB and Tmall
L #bh UB Tmall
HR@10 NDCG@10 HR@10 NDCG@10
1 2 0.0661 0.0413 0.0540 0.0387
4 0.0729 0.0466 0.0546 0.0401
2 2 0.0647 0.0390 0.0593 0.0377
4 0.0760 0.0451 0.0614 0.0385
3 2 0.0627 0.0355 0.0545 0.0324
4 0.0726 0.0429 0.0570 0.0337
Tab.2  Recommendation performance with more types of behaviors
Fig.3  Recommendation performance of deep learning-based methods (i.e., RIB and BINN, denoted by “origin”) and their enhanced versions with behavior transition vectors (i.e., RIB++ and BINN++, denoted by “origin++”)
1 R N He, W C Kang, J McAuley. Translation-based recommendation. In: Proceedings of the 17th ACM Conference on Recommender Systems. 2017, 161– 169
2 X G Peng, Y F Chen, Y C Duan, W K Pan, Z Ming. RBPR: role-based Bayesian personalized ranking for heterogeneous one-class collaborative filtering. In: Proceedings of the 24th ACM Conference on User Modeling, Adaptation and Personalisation (Extended Proceedings). 2016
3 W K Pan , Q Yang , W L Cai , Y F Chen , Q Zhang , X G Peng , Z Ming . Transfer to rank for heterogeneous one-class collaborative filtering. ACM Transactions on Information Systems, 2019, 37( 1): 10–
4 S Rendle, C Freudenthaler, L Schmidt-Thieme. Factorizing personalized Markov chains for next-basket recommendation. In: Proceedings of the 19th International Conference on World Wide Web. 2010, 811– 820
5 R N He, J McAuley. Fusing similarity models with Markov chains for sparse sequential recommendation. In: Proceedings of 16th International Conference on Data Mining. 2016, 191– 200
6 M Z Zhou, Z Y Ding, J L Tang, D W Yin. Micro behaviors: a new perspective in e-commerce recommender systems. In: Proceedings of the 11th ACM International Conference on Web Search and Data Mining. 2018, 727– 735
7 Z Li, H K Zhao, Q Liu, Z Y Huang, T Mei, E H Chen. Learning from history and present: Next-item recommendation via discriminatively exploiting user behaviors. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2018, 1734−1743
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed