Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front. Comput. Sci.    2023, Vol. 17 Issue (1) : 171308    https://doi.org/10.1007/s11704-022-1283-6
LETTER
Self-adaptive label filtering learning for unsupervised domain adaptation
Qing TIAN1,2(), Heyang SUN1, Shun PENG1, Tinghuai MA1,2
1. School of Computer and Software, Nanjing University of Information Science and Technology, Nanjing 210044, China
2. Engineering Research Center of Digital Forensics, Ministry of Education, Nanjing University of Information Science and Technology, Nanjing 210044, China
 Download: PDF(3924 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Corresponding Author(s): Qing TIAN   
Just Accepted Date: 29 October 2021   Issue Date: 01 March 2022
 Cite this article:   
Qing TIAN,Heyang SUN,Shun PENG, et al. Self-adaptive label filtering learning for unsupervised domain adaptation[J]. Front. Comput. Sci., 2023, 17(1): 171308.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-022-1283-6
https://academic.hep.com.cn/fcs/EN/Y2023/V17/I1/171308
Fig.1  Illustration of the proposed framework. The probability that a sample belongs to one class is represented by the area occupied by its corresponding color. The more colors in a sample, the more confusing that sample is
Fig.2  Demonstration of label filtering for the predicted pseudo-labels. (a) the confifident label; (b) the ambiguous label
PCA JDA JGSA DICD DGA-DA SALFL
C A 36.78 45.28 53.07 51.96 52.15 56.22
C W 31.98 41.89 48.21 47.68 47.34 60.77
C D 37.54 45.42 48.60 46.21 45.84 59.05
A C 34.82 39.26 41.66 41.66 41.36 45.95
A W 35.93 37.88 44.91 38.49 38.38 50.53
A D 27.52 39.04 45.15 38.65 38.34 48.34
W C 26.34 31.65 33.47 33.68 33.25 37.03
W A 31.44 32.73 40.87 41.20 41.56 42.33
W D 77.87 89.67 88.69 91.17 90.04 93.79
D C 29.52 30.63 30.50 34.08 33.60 33.67
D A 31.69 33.27 38.73 33.87 33.56 37.35
D W 75.80 89.59 93.74 93.76 93.26 94.14
Average 39.77 46.36 50.63 49.37 49.06 54.93
Tab.1  Recognition accuracy (%) on Office-10 + Caltech-10
1 S Wold , K Esbensen , P Geladi . Principal component analysis. Chemometrics and Intelligent Laboratory Systems, 1987, 2( 1−3): 37– 52
2 M Long, G Ding, J Wang, J Sun, Y Guo, P S Yu. Transfer sparse coding for robust image representation. In: Proceedings of 2013 IEEE Conference on Computer Vision and Pattern Recognition. 2013, 407– 414
3 J Zhang, W Li, P Ogunbona. Joint geometrical and statistical alignment for visual domain adaptation. In: Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. 2017, 5150– 5158
4 S Li , S Song , G Huang , Z Ding , C Wu . Domain invariant and class discriminative feature learning for visual domain adaptation. IEEE Transactions on Image Processing, 2018, 27( 9): 4260– 4273
5 L Luo , L Chen , S Hu , Y Lu , X Wang . Discriminative and geometry-aware unsupervised domain adaptation. IEEE Transactions on Cybernetics, 2020, 50( 9): 3914– 3927
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed