Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front. Comput. Sci.    2023, Vol. 17 Issue (5) : 175106    https://doi.org/10.1007/s11704-022-2127-0
REVIEW ARTICLE
FPGA sharing in the cloud: a comprehensive analysis
Jinyang GUO1, Lu ZHANG1, José ROMERO HUNG2, Chao LI1(), Jieru ZHAO1, Minyi GUO1
1. Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
2. Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai 200240, China
 Download: PDF(3091 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Cloud vendors are actively adopting FPGAs into their infrastructures for enhancing performance and efficiency. As cloud services continue to evolve, FPGA (field programmable gate array) systems would play an even important role in the future. In this context, FPGA sharing in multi-tenancy scenarios is crucial for the wide adoption of FPGA in the cloud. Recently, many works have been done towards effective FPGA sharing at different layers of the cloud computing stack.

In this work, we provide a comprehensive survey of recent works on FPGA sharing. We examine prior art from different aspects and encapsulate relevant proposals on a few key topics. On the one hand, we discuss representative papers on FPGA resource sharing schemes; on the other hand, we also summarize important SW/HW techniques that support effective sharing. Importantly, we further analyze the system design cost behind FPGA sharing. Finally, based on our survey, we identify key opportunities and challenges of FPGA sharing in future cloud scenarios.

Keywords cloud FPGA      FPGA sharing      efficiency      design cost     
Corresponding Author(s): Chao LI   
Just Accepted Date: 26 July 2022   Issue Date: 15 December 2022
 Cite this article:   
Jinyang GUO,Lu ZHANG,José ROMERO HUNG, et al. FPGA sharing in the cloud: a comprehensive analysis[J]. Front. Comput. Sci., 2023, 17(5): 175106.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-022-2127-0
https://academic.hep.com.cn/fcs/EN/Y2023/V17/I5/175106
Related survey works Focus Year
Survey of deep learning neural networks implementation on FPGAs [6] Application 2020
Accelerating DNNs from local to virtualized FPGA in the Cloud: a survey of trends [7] Application 2021
Survey and future trends for FPGA cloud architectures [8] Architecture 2021
A survey of system architectures and techniques for FPGA virtualization [9] Virtualization 2021
Security of FPGAs in data centers [10] Security 2017
Trust in FPGA-accelerated cloud computing [11] Security 2021
Security of cloud FPGAs: a survey [12] Security 2021
SoK: secure FPGA multi-tenancy in the cloud: challenges and opportunities [13] Security 2021
Tab.1  Other surveys of the cloud FPGA in multi-tenancy scenarios
Fig.1  The organization of this work
Fig.2  A taxonomy of FPGA sharing
Resource category Resource type Configuration & description Sharing object
Logic resource [42,43] Programmable I/O unit Configurable I/O port Configuration
Programmable logic unit LUT and register
Function unit Pre-defined hardware functions
Hard core Control hard core
Connectivity [14,30,4449] PCIe IP PCI express control Bandwith
NIC Network control
Wiring resource Configurable connectivity units
Memory [15,39,50,51] Distributed RAM Multi-mode memory Capacity & bandwith
DRAM Off-chip memory storage
HBM High bandwidth storage
BRAM RAM with changeable port
Tab.2  FPGA resources and the sharing object
Fig.3  Floorplans of Xilinx Alveo series boards
Fig.4  FPGA sharing in multi-granularity
Category Support Related work
Hardware Reconfiguration [15,21,32,33,63]
Connectivity [30,46]
Partition [1,21,55]
Software Isolation [64]
Migration [65,66]
Abstraction [64,67]
Virtualization [18,68,69]
Management [15,46,60]
Scheduling [21,44,47,56,69]
Development [18,31,47]
Security Data Confidentiality [7072]
Bitstream Protection [60,73-75]
Power Control [7678]
Workload Isolation [3,30,45,79]
Configuration Refresh [63,80]
Tab.3  Supports for FPGA sharing
Work SW support Organization Contorl unit Sharing manner Year Key technique
RC3E [56] RV, RM, TS PRR I/O S&T 2016 Hypervisor
VFR [54] RV, RM, TS PRR I/O S&T 2016 PRR manager
RRaaS [45] RV, RM, TS, DT PRR API S&T 2016 NoC, hypervisor
hCODE [47] RV, RM, TS, DT PRR I/O & logic S&T 2018 PRR manager
FPGApooling [21] RV, RM, TS PRR I/O& logic S&T 2021 Pooling scheduler
Feniks [64] RV,RM,SA,PI DPRR I/O & logic S&T 2017 Region isolation, I/O abstraction
RACOS [46] RV, RM DPRR Accelertor API S&T 2017 PCIe controller
LiveMig [66] RV,TM,TS DPRR I/O& logic S&T 2018 Live task migration
AmorphOS [30] RV, RM DPRR I/O S&T 2018 PCIe controller, Zone manager
ViTAL [18] RV, RM, DT DPRR I/O & logic S&T 2020 Compiler, Hypervisor
Coyote [67] RV, RM, SA, TS DPRR I/O & logic S&T 2020 OS abstraction
Hetero-ViTAL [31] RV, RM, TS, DT DPRR I/O & logic S&T 2021 Hypervisor, LL Block
pvFPGA [44] RM, TS Board Accelertor API T 2013 Xen VMM
Catapult [15] RM, TS Board I/O & Network T 2014 Resource controller
VFACC [60] RM, TS Board Accelertor API T 2015 Hypervisor, PCIe controller
Blaze [57] RM, TS, DT Board I/O T 2016 Run-time manager
QMC [83] RM, TS Board I/O & Network T 2017 Avalone connector
Migration [65] RM,TN,TS. Board API & Network T 2017 vFPGA-based Migration
RTDNN [69] RM, TS Board Accelertor API T 2018 Hypervisor
FPGAvirt [49] RM, TS Board Network T 2018 NoC, Sevice manager
Tab.4  Software support of FPGA sharing, categorized by target partition of device
Stage Cost types Source Explanation Quantity Related work
Preparation Prep. Costs Hardware Expenditure of Facility Money Cost () [1-5,15,82]
Security Prevention Costs: Encryption/Isolation Overhead (O & ) [3,73,74]
Software Development Labor Costs Money Cost () [14,18,30,31]
Execution Exec. Costs Security Power Control/Assets Protection Overhead (O & D) [76,77,86]
Software Scheduling/Data/Execution Overhead (D) [21,49,88,89]
Release Post Costs Security Configuration Memory Refresh Overhead (D) [11,80,90]
Tab.5  Costs of FPGA sharing, categorised by the execution stage, cost type and quantification
  
  
  
  
  
  
1 Cloud Amazon . Amazon EC2 F1 Instances. See Aws.amazon.com/cn/ec2/instance-types/f1/ website, 2016
2 Cloud Huawei . FPGA Accelerated Cloud Server. See Huaweicloud.com/product/facs.html website, 2017
3 Cloud Alibaba . FPGA Cloud Server. See Aliyun.com/product/ecs/fpga website, 2017
4 AI Cloud Baidu . FPGA Cloud Server. See Cloud.baidu.com/product/fpga.html website, 2017
5 Cloud Tencent . FPGA Cloud Server. See Cloud.tencent.com/product/fpga website, 2018
6 E H C, Tourad M Eleuldj . Survey of deep learning neural networks implementation on FPGAs. In: Proceedings of the 5th International Conference on Cloud Computing and Artificial Intelligence: Technologies and Applications. 2020, 1−8
7 C, Wu V, Fresse B, Suffran H Konik . Accelerating DNNs from local to virtualized FPGA in the cloud: a survey of trends. Journal of Systems Architecture, 2021, 119: 102257
8 H, Shahzad A, Sanaullah M C Herbordt . Survey and future trends for FPGA cloud architectures. In: Proceedings of 2021 IEEE High Performance Extreme Computing Conference. 2021, 1−10
9 M H, Quraishi E B, Tavakoli F Ren . A survey of system architectures and techniques for FPGA virtualization. IEEE Transactions on Parallel and Distributed Systems, 2021, 32( 9): 2216–2230
10 S, Trimberger S McNeil . Security of FPGAs in data centers. In: Proceedings of IEEE the 2nd International Verification and Security Workshop. 2017, 117−122
11 F, Turan I Verbauwhede . Trust in FPGA-accelerated cloud computing. ACM Computing Surveys, 2021, 53( 6): 128
12 C, Jin V, Gohil R, Karri J Rajendran . Security of cloud FPGAs: a survey. 2020, arXiv preprint arXiv: 2005.04867
13 G, Dessouky A R, Sadeghi S Zeitouni . SoK: Secure FPGA multi-tenancy in the cloud: challenges and opportunities. In: Proceedings of 2021 IEEE European Symposium on Security and Privacy. 2021, 487−506
14 F, Chen Y, Shan Y, Zhang Y, Wang H, Franke X, Chang K Wang . Enabling FPGAs in the cloud. In: Proceedings of the 11th ACM Conference on Computing Frontiers. 2014, 3
15 A, Putnam A M, Caulfield E S, Chung D, Chiou K, Constantinides J, Demme H, Esmaeilzadeh J, Fowers G P, Gopal J, Gray M, Haselman S, Hauck S, Heil A, Hormati J Y, Kim S, Lanka J, Larus E, Peterson S, Pope A, Smith J, Thong P Y, Xiao D Burger . A reconfigurable fabric for accelerating large-scale datacenter services. In: Proceedings of 2014 ACM/IEEE 41st International Symposium on Computer Architecture. 2014, 13−24
16 Intel. Hardware accelerator research program. See Communityintel.com/t5/Software-Tuning-Performance/HARP-Hardware-Accelerator-Research-Program/m-p/1126570 website, 2018
17 A, Iordache G, Pierre P, Sanders F. Coutinho J G, De M Stillwell . High performance in the cloud with FPGA groups. In: Proceedings of the 9th IEEE/ACM International Conference on Utility and Cloud Computing. 2016, 1−10
18 Y, Zha J Li . Virtualizing FPGAs in the cloud. In: Proceedings of the 25th International Conference on Architectural Support for Programming Languages and Operating Systems. 2020, 845−858
19 S, Byma J G, Steffan H, Bannazadeh A, Leon-Garcia P Chow . FPGAS in the cloud: booting virtualized hardware accelerators with OpenStack. In: Proceedings of the 22nd IEEE Annual International Symposium on Field-Programmable Custom Computing Machines. 2014, 109−116
20 C, Lavin A Kaviani . RapidWright: enabling custom crafted implementations for FPGAs. In: Proceedings of the 26th IEEE Annual International Symposium on Field-Programmable Custom Computing Machines. 2018, 133−140
21 Z, Zhu A X, Liu F, Zhang F Chen . FPGA resource pooling in cloud computing. IEEE Transactions on Cloud Computing, 2021, 9( 2): 610–626
22 L, Guo Y, Chi J, Wang J, Lau W, Qiao E, Ustun Z, Zhang J Cong . AutoBridge: coupling coarse-grained floorplanning and pipelining for high-frequency HLS design on multi-die FPGAs. In: Proceedings of the 2021 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays. 2021, 81−92
23 M, Moghaddamfar C, Färber W, Lehner N, May A Kumar . Resource-efficient database query processing on FPGAs. In: Proceedings of the 17th International Workshop on Data Management on New Hardware. 2021, 4
24 X, Chen H, Tan Y, Chen B, He W F, Wong D Chen . ThunderGP: HLS-based graph processing framework on FPGAs. In: Proceedings of 2021 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays. 2021, 69−80
25 C, Liu Z, Shao K, Li M, Wu J, Chen R, Li X, Liao H Jin . ScalaBFS: a scalable BFS accelerator on FPGA-HBM platform. In: Proceedings of 2021 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays. 2021, 147
26 Y W, Wu Q G, Wang L, Zheng X F, Liao H, Jin W B, Jiang R, Zheng K Hu . FDGLib: a communication library for efficient large-scale graph processing in FPGA-accelerated data centers. Journal of Computer Science and Technology, 2021, 36( 5): 1051–1070
27 M, Bacis R, Brondolin M D Santambrogio . BlastFunction: an FPGA-as-a-service system for accelerated serverless computing. In: Proceedings of the 23rd Conference on Design, Automation and Test in Europe. 2020, 852−857
28 B, Hong H Y, Kim M, Kim T, Suh L, Xu W Shi . FASTEN: an FPGA-based secure system for big data processing. IEEE Design & Test, 2018, 35( 1): 30–38
29 R, Skhiri V, Fresse J, Malek B, Suffran J Jamont . An approach for an efficient sharing of IP as a service in cloud FPGA. In: Proceedings of the 18th International Multi-Conference on Systems, Signals & Devices. 2021, 784−789
30 A, Khawaja J, Landgraf R, Prakash M, Wei E, Schkufza C J Rossbach . Sharing, protection, and compatibility for reconfigurable fabric with Amorphos. In: Proceedings of the 13th USENIX Conference on Operating Systems Design and Implementation. 2018, 107−127
31 Y, Zha J Li . Hetero-ViTAL: A virtualization stack for heterogeneous FPGA clusters. In: Proceedings of the 48th ACM/IEEE Annual International Symposium on Computer Architecture. 2021, 470−483
32 Xilinx. Alveo data center accelerator card platforms. See Docs.xilinx.com/r/en-US/ug1120-alveo-platforms website, 2021
33 Intel. FPGA Cloud Server, High Bandwidth Memory (HBM2) Interface Intel® FPGA IP user guide. See Intel website, 2021
34 Y K, Choi J, Cong Z, Fang Y, Hao G, Reinman P Wei . In-depth analysis on microarchitectures of modern heterogeneous CPU-FPGA platforms. ACM Transactions on Reconfigurable Technology and Systems, 2019, 12( 1): 4
35 N, Voss P, Quintana O, Mencer W, Luk G Gaydadjiev . Memory mapping for multi-die FPGAs. In: Proceedings of the 27th IEEE Annual International Symposium on Field-Programmable Custom Computing Machines. 2019, 78−86
36 Xilinx. TAlveo U280 data center accelerator card user guideT. See Xilinx.com/products/boards-and-kits/alveo/u280 website, 2021
37 J R, Hung C, Li P, Wang C, Shao J, Guo J, Wang G Shi . ACE-GCN: a fast data-driven FPGA accelerator for GCN embedding. ACM Transactions on Reconfigurable Technology and Systems, 2021, 14( 4): 21
38 Xilinx. Xilinx UltraScale: The next-generation architecture for your next-generation architecture. See Docs.xilinx.com/v/u/en-US/wp435-Xilinx-UltraScale website. 2014
39 J, Ma G, Zuo K, Loughlin X, Cheng Y, Liu A M, Eneyew Z, Qi B Kasikci . A hypervisor for shared-memory FPGA platforms. In: Proceedings of the 25th International Conference on Architectural Support for Programming Languages and Operating Systems. 2020, 827−48444
40 N, Tarafdar N, Eskandari T, Lin P Chow . Designing for FPGAs in the cloud. IEEE Design & Test, 2018, 35( 1): 23–29
41 A, Vaishnav K D, Pham D, Koch J Garside . Resource elastic virtualization for FPGAs using OpenCL. In: Proceedings of the 28th International Conference on Field Programmable Logic and Applications. 2018, 111−41184
42 I, Gonzalez S, Lopez-Buedo G, Sutter D, Sanchez-Roman F J, Gomez-Arribas J Aracil . Virtualization of reconfigurable coprocessors in HPRC systems with multicore architecture. Journal of Systems Architecture, 2012, 58(6−7): 247−256
43 C H, Huang P A Hsiung . Virtualizable hardware/software design infrastructure for dynamically partially reconfigurable systems. ACM Transactions on Reconfigurable Technology and Systems, 2013, 6( 2): 11
44 W, Wang M, Bolic J Parri . pvFPGA: accessing an FPGA-based hardware accelerator in a paravirtualized environment. In: Proceedings of 2013 International Conference on Hardware/Software Codesign and System Synthesis. 2013, 10
45 H L, Kidane E B, Bourennane G Ochoa-Ruiz . NoC based virtualized accelerators for cloud computing. In: Proceedings of the 10th IEEE International Symposium on Embedded Multicore/Many-core Systems-on-Chip. 2016, 133−137
46 C, Vatsolakis D Pnevmatikatos . RACOS: transparent access and virtualization of reconfigurable hardware accelerators. In: Proceedings of 2017 International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation. 2017, 11−19
47 Q, Zhao M, Amagasaki M, Iida M, Kuga T Sueyoshi . Enabling FPGA-as-a-service in the cloud with hCODE platform. IEICE Transactions on Information and Systems, 2018, 101-D( 2): 335–343
48 J M, Mbongue F, Hategekimana D T, Kwadjo C Bobda . FPGA virtualization in cloud-based infrastructures over virtio. In: Proceedings of the 36th IEEE International Conference on Computer Design. 2018, 242−245
49 J, Mbongue F, Hategekimana D T, Kwadjo D, Andrews C Bobda . FPGAVirt: a novel virtualization framework for FPGAs in the cloud. In: Proceedings of the 11th IEEE International Conference on Cloud Computing. 2018, 862−865
50 J, Coole G Stitt . Intermediate fabrics: virtual architectures for circuit portability and fast placement and routing. In: Proceedings of the 8th International Conference on Hardware/Software Codesign and System Synthesis. 2010, 13−22
51 J, Cong P, Wei C H, Yu P Zhou . Bandwidth optimization through on-chip memory restructuring for HLS. In: Proceedings of the 54th ACM/EDAC/IEEE Design Automation Conference. 2017, 43
52 J, Yang L, Yan L, Ju Y, Wen S, Zhang T Chen . Homogeneous NoC-based FPGA: the foundation for virtual FPGA. In: Proceedings of the 10th IEEE International Conference on Computer and Information Technology. 2010, 62−67
53 C, Huang P A Hsiung . Hardware resource virtualization for dynamically partially reconfigurable systems. IEEE Embedded Systems Letters, 2009, 1( 1): 19–23
54 M, Asiatici N, George K, Vipin S A, Fahmy P Ienne . Designing a virtual runtime for FPGA accelerators in the cloud. In: Proceedings of the 26th International Conference on Field Programmable Logic and Applications. 2016, 1−2
55 I, Giechaskiel K, Rasmussen J Szefer . Reading between the dies: Cross-SLR covert channels on multi-tenant cloud FPGAs. In: Proceedings of the 37th IEEE International Conference on Computer Design. 2019, 1−10
56 O, Knodel P, Lehmann R G Spallek . RC3E: reconfigurable accelerators in data centres and their provision by adapted service models. In: Proceedings of the 9th IEEE International Conference on Cloud Computing. 2016, 19−26
57 M, Huang D, Wu C H, Yu Z, Fang M, Interlandi T, Condie J Cong . Programming and runtime support to blaze FPGA accelerator deployment at datacenter scale. In: Proceedings of the 7th ACM Symposium on Cloud Computing. 2016, 456−469
58 J, Stangl ̈unser T, Lor S M P Dinakarrao . A fast and resource efficient FPGA implementation of secret sharing for storage applications. In: Madsen J, Coskun A K, eds, 2018 Design, Automation & Test in Europe Conference & Exhibition. 2018, 654–659
59 J, Weerasinghe F, Abel C, Hagleitner A Herkersdorf . Enabling FPGAs in hyperscale data centers. In: Proceedings of 2015 IEEE the 12th Intl Conf on Ubiquitous Intelligence and Computing and 2015 IEEE the 12th Intl Conf on Autonomic and Trusted Computing and 2015 IEEE the 15th Intl Conf on Scalable Computing and Communications and its Associated Workshops. 2015, 1078−1086
60 S A, Fahmy K, Vipin S Shreejith . Virtualized FPGA accelerators for efficient cloud computing. In: Proceedings of the 7th IEEE International Conference on Cloud Computing Technology and Science. 2015, 430−435
61 X, Li X, Wang F, Liu H Xu . DHL: enabling flexible software network functions with FPGA acceleration. In: Proceedings of the 38th IEEE International Conference on Distributed Computing Systems. 2018, 1−11
62 K, Papadimitriou A, Dollas S Hauck . Performance of partial reconfiguration in FPGA systems: a survey and a cost model. ACM Transactions on Reconfigurable Technology and Systems, 2011, 4( 4): 36
63 Xilinx. UltraScale Architecture Configuration. See Docs.xilinx.com/v/u/en-US/ug570-ultrascale-configuration website, 2022
64 J, Zhang Y, Xiong N, Xu R, Shu B, Li P, Cheng G, Chen T Moscibroda . The feniks FPGA operating system for cloud computing. In: Proceedings of the 8th Asia-Pacific Workshop on Systems. 2017, 22
65 O, Knodel P R, Genssler R G Spallek . Migration of long-running tasks between reconfigurable resources using virtualization. ACM SIGARCH Computer Architecture News, 2016, 44( 4): 56–61
66 A, Vaishnav K, Pham D Koch . Live migration for OpenCL FPGA accelerators. In: Proceedings of 2018 International Conference on Field-Programmable Technology. 2018, 38−45
67 D, Korolija T, Roscoe G Alonso . Do OS abstractions make sense on FPGAs? In: Proceedings of the 14th USENIX Conference on Operating Systems Design and Implementation. 2020, 991−1010
68 M, Asiatici N, George K, Vipin S A, Fahmy P Ienne . Virtualized execution runtime for FPGA accelerators in the cloud. IEEE Access, 2017, 5: 1900–1910
69 J, Fowers K, Ovtcharov M, Papamichael T, Massengill M, Liu D, Lo S, Alkalay M, Haselman L, Adams M, Ghandi S, Heil P, Patel A, Sapek G, Weisz L, Woods S, Lanka S K, Reinhardt A M, Caulfield E S, Chung D Burger . A configurable cloud-scale DNN processor for real-time AI. In: Proceedings of the 45th ACM/IEEE Annual International Symposium on Computer Architecture. 2018, 1−14
70 S, Yazdanshenas V Betz . Improving confidentiality in virtualized FPGAs. In: Proceedings of 2018 International Conference on Field-Programmable Technology. 2018, 258−261
71 S, Yazdanshenas V Betz . The costs of confidentiality in virtualized FPGAs. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2019, 27( 10): 2272–2283
72 M, Zhao M, Gao C Kozyrakis . ShEF: shielded enclaves for cloud FPGAs. In: Proceedings of the 27th ACM International Conference on Architectural Support for Programming Languages and Operating Systems. 2022, 1070−1085
73 J, Krautter D R E, Gnad M B Tahoori . Mitigating electrical-level attacks towards secure multi-tenant FPGAs in the cloud. ACM Transactions on Reconfigurable Technology and Systems, 2019, 12( 3): 12
74 J, Krautter D, Gnad M Tahoori . CPAmap: On the complexity of secure FPGA virtualization, multi-tenancy, and physical design. IACR Transactions on Cryptographic Hardware and Embedded Systems, 2020, 2020( 3): 121–146
75 A, Duncan A, Nahiyan F, Rahman G, Skipper M, Swany A, Lukefahr F, Farahmandi M Tehranipoor . SeRFI: Secure remote FPGA initialization in an untrusted environment. In: Proceedings of the 38th IEEE VLSI Test Symposium. 2020, 1−6
76 J, Krautter D R E, Gnad F, Schellenberg A, Moradi M B Tahoori . Active fences against voltage-based side channels in multi-tenant FPGAs. In: Proceedings of 2019 IEEE/ACM International Conference on Computer-Aided Design. 2019, 1−8
77 D, Jayasinghe A, Ignjatovic S Parameswaran . RFTC: runtime frequency tuning countermeasure using FPGA dynamic reconfiguration to mitigate power analysis attacks. In: Proceedings of the 56th ACM/IEEE Design Automation Conference. 2019, 1−6
78 G, Provelengios D, Holcomb R Tessier . Characterizing power distribution attacks in multi-user FPGA environments. In: Proceedings of the 29th International Conference on Field Programmable Logic and Applications. 2019, 194−201
79 H, Walder M Platzner . A runtime environment for reconfigurable hardware operating systems. In: Proceedings of the 14th International Conference on Field Programmable Logic and Application. 2004, 831−835
80 H J, Ko Z, Li S Midkiff . Optimizing data layout and system configuration on FPGA-based heterogeneous platforms. In: Proceedings of 2018 IEEE/ACM International Conference on Computer-Aided Design. 2018, 1−8
81 D Koch . Partial Reconfiguration on FPGAs: Architectures, Tools and Applications. New York: Springer, 2013
82 A M, Caulfield E S, Chung A, Putnam H, Angepat J, Fowers M, Haselman S, Heil M, Humphrey P, Kaur J Y, Kim D, Lo T, Massengill K, Ovtcharov M, Papamichael L, Woods S, Lanka D, Chiou D Burger . A cloud-scale acceleration architecture. In: Proceedings of the 49th Annual IEEE/ACM International Symposium on Microarchitecture. 2016, 1−13
83 S, Yazdanshenas V Betz . Quantifying and mitigating the costs of FPGA virtualization. In: Proceedings of the 27th International Conference on Field Programmable Logic and Applications. 2017, 1−7
84 R, Kirchgessner G, Stitt A, George H Lam . VirtualRC: a virtual FPGA platform for applications and tools portability. In: Proceedings of the 20th ACM/SIGDA International Symposium on Field Programmable Gate Arrays. 2012, 205−208
85 G, Stitt R, Karam K, Yang S Bhunia . A uniquified virtualization approach to hardware security. IEEE Embedded Systems Letters, 2017, 9( 3): 53–56
86 F, Schellenberg D R E, Gnad A, Moradi M B Tahoori . An inside job: remote power analysis attacks on FPGAs. In: Proceedings of 2018 Design, Automation & Test in Europe Conference & Exhibition. 2018, 1111−1116
87 S Trimberger . Security in SRAM FPGAs. IEEE Design & Test of Computers, 2007, 24( 6): 581
88 P, Zhou J, Sheng C H, Yu P, Wei J, Wang D, Wu J Cong . TMOCHA: multinode cost optimization in heterogeneous clouds with acceleratorsT. In: Proceedings of 2021 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays. 2021, 273−279
89 M, Shepovalov V Akella . FPGA and GPU-based acceleration of ML workloads on amazon cloud - A case study using gradient boosted decision tree library. Integration, 2020, 70: 1–9
90 K, Eguro R Venkatesan . FPGAs for trusted cloud computing. In: Proceedings of the 22nd International Conference on Field Programmable Logic and Applications. 2012, 63−70
91 C, Wu R, Buyya K Ramamohanarao . Cloud pricing models: taxonomy, survey, and interdisciplinary challenges. ACM Computing Surveys, 2020, 52( 6): 108
92 J, Landgraf T, Yang W, Lin C J, Rossbach E Schkufza . Compiler-driven FPGA virtualization with SYNERGY. In: Proceedings of the 26th ACM International Conference on Architectural Support for Programming Languages and Operating Systems. 2021, 818−831
[1] FCS-22127-OF-JG_suppl_1 Download
[1] Yuxia SUN, Jiefeng FANG, Yanjia CHEN, Yepang LIU, Zhao CHEN, Song GUO, Xinkai CHEN, Ziyuan TAN. Energy inefficiency diagnosis for Android applications: a literature review[J]. Front. Comput. Sci., 2023, 17(1): 171201-.
[2] Tao TIAN, Hanli WANG. Large-scale video compression: recent advances and challenges[J]. Front. Comput. Sci., 2018, 12(5): 825-839.
[3] Hui DOU, Yong QI. An online electricity cost budgeting algorithm for maximizing green energy usage across data centers[J]. Front. Comput. Sci., 2017, 11(4): 661-674.
[4] Jie WEN, Xiaofeng MENG, Xing HAO, Jianliang XU. An efficient approach for continuous density queries[J]. Front Comput Sci, 2012, 6(5): 581-595.
[5] Defu CHEN, Zhengsu TAO. An adaptive polling interval and short preamble media access control protocol for wireless sensor networks[J]. Front Comput Sci Chin, 2011, 5(3): 300-307.
[6] Lili RONG , Tianzhu GUO , Jiyong ZHANG , . A new centrality measure based on sub-tree[J]. Front. Comput. Sci., 2009, 3(3): 356-360.
[7] Behrouz MAHAM, Mérouane DEBBAH, Are HJ?RUNGNES. Energy-efficient cooperative routing in BER constrained multihop networks[J]. Front Comput Sci Chin, 2009, 3(2): 263-271.
[8] GAO Ting, YAN Fengli, LI Youcheng, WANG Zhixi. Quantum probabilistically cloning and computation[J]. Front. Comput. Sci., 2008, 2(2): 179-189.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed