Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front. Comput. Sci.    2023, Vol. 17 Issue (4) : 174323    https://doi.org/10.1007/s11704-022-2189-z
LETTER
Deep active sampling with self-supervised learning
Haochen SHI1,2(), Hui ZHOU2
1. College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
2. College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
 Download: PDF(2186 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Corresponding Author(s): Haochen SHI   
Just Accepted Date: 23 August 2022   Issue Date: 03 November 2022
 Cite this article:   
Haochen SHI,Hui ZHOU. Deep active sampling with self-supervised learning[J]. Front. Comput. Sci., 2023, 17(4): 174323.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-022-2189-z
https://academic.hep.com.cn/fcs/EN/Y2023/V17/I4/174323
Fig.1  Deep active sampling framework with self-supervised learning
  
Fig.2  Performance comparison of various methods when the self-supervised model is MoCo. (a) Fashion-MNIST; (b) CIFAR10
Fig.3  Performance comparison of various methods when the self-supervised method is to predict the image rotations. (a) Fashion-MNIST; (b) CIFAR10
Sampling Query sample quantity
1000 2000 3000 4000 5000
I=u 0.8022 0.8209 0.8315 0.8457 0.8570
I=ν 0.8021 0.8163 0.8247 0.8265 0.8293
I=u+λν 0.8053 0.8273 0.8418 0.8530 0.8597
Tab.1  Experimental results of various sampling metric under different query numbers on fashion-MNIST
Sampling Query sample quantity
1000 2000 3000 4000 5000
I=u 0.6722 0.7120 0.7343 0.7478 0.7576
I=ν 0.6749 0.6972 0.7133 0.7354 0.7480
I=u+λν 0.6875 0.7280 0.7528 0.7625 0.7757
Tab.2  Experimental results of various sampling metric under different query numbers on CIFAR10
1 J Z, Bengar de Weijer J, van B, Twardowski B Raducanu . Reducing label effort: self-supervised meets active learning. In: Proceedings of 2021 IEEE/CVF International Conference on Computer Vision. 2021, 1631–1639
2 K, He H, Fan Y, Wu S, Xie R Girshick . Momentum contrast for unsupervised visual representation learning. In: Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020, 9726–9735
3 H, Xiao K, Rasul R Vollgraf . Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms. 2017, arXiv preprint arXiv: 1708.07747
4 A, Krizhevsky G Hinton . Learning multiple layers of features from tiny images. See Google website, 2009
[1] FCS-22189-OF-HS_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed