Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front. Comput. Sci.    2023, Vol. 17 Issue (6) : 176615    https://doi.org/10.1007/s11704-023-2704-x
Information Systems
Dynamic traveling time forecasting based on spatial-temporal graph convolutional networks
Fangshu CHEN1, Yufei ZHANG1, Lu CHEN2, Xiankai MENG1, Yanqiang QI1, Jiahui WANG1()
1. School of Computer and Information Engineering, Shanghai Polytechnic University, Shanghai 201209, China
2. College of Computer Science, Zhejiang University, Hangzhou 310027, China
 Download: PDF(1490 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Corresponding Author(s): Jiahui WANG   
Just Accepted Date: 10 October 2023   Issue Date: 29 November 2023
 Cite this article:   
Fangshu CHEN,Yufei ZHANG,Lu CHEN, et al. Dynamic traveling time forecasting based on spatial-temporal graph convolutional networks[J]. Front. Comput. Sci., 2023, 17(6): 176615.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-023-2704-x
https://academic.hep.com.cn/fcs/EN/Y2023/V17/I6/176615
Fig.1  Framework of DTT-STG
Fig.2  An example of map-matching processing
Fig.3  Comparison of models based on different metrics. (a) Confidence threshold and compression rate; (b) compression and fitting rate
Dataset Xi’an traffic dataset
Model MAE MAPE/% RMSE
LSTM 8.03 5.19 10.92
GRU 8.04 5.20 10.92
GRCN [7] 7.58 4.86 10.43
STGCN [8] 7.57 4.82 10.47
DCRNN [5] 7.58 4.83 10.48
OGCRNN [9] 7.44 4.78 10.36
DiffSTG 7.33 4.67 10.21
Tab.1  Performance comparison of different approaches and intervals
1 G, Dai X, Hu Y, Ge Z, Ning Y Liu . Attention based simplified deep residual network for citywide crowd flows prediction. Frontiers of Computer Science, 2021, 15( 2): 152317
2 F, Chen Y, Qi J, Wang L, Chen Y, Zhang L Shi . Temporal metrics based aggregated graph convolution network for traffic forecasting. Neurocomputing, 2023, 556: 126662
3 S A, Pedersen B, Yang C S Jensen . Fast stochastic routing under time-varying uncertainty. The VLDB Journal, 2020, 29( 4): 819–839
4 C, Guo B, Yang J, Hu C Jensen . Learning to route with sparse trajectory sets. In: Proceeding of the 34th IEEE International Conference on Data Engineering. 2018, 1073−1084
5 Y, Li R, Yu C, Shahabi Y Liu . Diffusion convolutional recurrent neural network: Data-driven traffic forecasting. In: Proceedings of the 6th International Conference on Learning Representations. 2018, 1−16
6 Z, Wu S, Pan G, Long J, Jiang C Zhang . Graph wavenet for deep spatial-temporal graph modeling. In: Proceedings of the 28th International Joint Conference on Artificial Intelligence. 2019, 1907−1913
7 Y, Seo M, Defferrard P, Vandergheynst X Bresson . Structured sequence modeling with graph convolutional recurrent networks. In: Proceedings of the 25th International Conference on Neural Information Processing. 2018, 362−373
8 B, Yu H, Yin Z Zhu . Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. 2018, 3634−3640
9 K, Guo Y, Hu Z, Qian H, Liu K, Zhang Y, Sun J, Gao B Yin . Optimized graph convolution recurrent neural network for traffic prediction. IEEE Transactions on Intelligent Transportation Systems, 2021, 22( 2): 1138–1149
[1] FCS-22704-OF-FC_suppl_1 Download
[2] FCS-22704-OF-FC_suppl_2 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed