Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front. Comput. Sci.    2024, Vol. 18 Issue (4) : 184818    https://doi.org/10.1007/s11704-024-3288-9
Information Security
Generalized splitting-ring number theoretic transform
Zhichuang LIANG1, Yunlei ZHAO1,2(), Zhenfeng ZHANG3
1. School of Computer Science, Fudan University, Shanghai 200433, China
2. State Key Laboratory of Cryptology, Beijing 100036, China
3. Institute of Software, Chinese Academy of Sciences, Beijing 100190, China
 Download: PDF(1382 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Corresponding Author(s): Yunlei ZHAO   
Just Accepted Date: 17 January 2024   Issue Date: 03 April 2024
 Cite this article:   
Zhichuang LIANG,Yunlei ZHAO,Zhenfeng ZHANG. Generalized splitting-ring number theoretic transform[J]. Front. Comput. Sci., 2024, 18(4): 184818.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-024-3288-9
https://academic.hep.com.cn/fcs/EN/Y2024/V18/I4/184818
  
  
  
Fig.1  Comparison between original NTT algorithm of NTTRU and our GSR-NTT for KEM schemes
1 J M Pollard . The fast Fourier transform in a finite field. Mathematics of Computation, 1971, 25( 114): 365–374
2 R C, Agarwal C S Burrus . Number theoretic transforms to implement fast digital convolution. Proceedings of the IEEE, 1975, 63( 4): 550–560
3 Zhu Y M, Liu Z, Pan Y B. When NTT meets Karatsuba: preprocess-then-NTT technique revisited. In: Proceedings of the 23rd International Conference on Information and Communications Security. 2021, 249−264
4 Liang Z C, Shen S Y, Shi Y T, Sun D N, Zhang C X, Zhang G Y, Zhao Y L, Zhao Z X. Number theoretic transform: generalization, optimization, concrete analysis and applications. In: Proceedings of the 16th International Conference on Information Security and Cryptology. 2020, 415−432
5 V, Lyubashevsky G Seiler . NTTRU: truly fast NTRU using NTT. IACR Transactions on Cryptographic Hardware and Embedded Systems, 2019, 2019( 3): 180–201
6 H Nussbaumer . Fast polynomial transform algorithms for digital convolution. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1980, 28( 2): 205–215
7 C A, Hassan O Yayla . Radix-3 NTT-based polynomial multiplication for lattice-based cryptography. IACR Cryptology ePrint Archive, 2022, 726
[1] FCS-23288-OF-ZL_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed