Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front. Comput. Sci.    2025, Vol. 19 Issue (4) : 194203    https://doi.org/10.1007/s11704-024-3449-x
Software
ACbot: an IIoT platform for industrial robots
Rui WANG1, Xudong MOU1,2, Tianyu WO2,3(), Mingyang ZHANG4, Yuxin LIU1, Tiejun WANG1,5, Pin LIU6, Jihong YAN4, Xudong LIU1,2,5
1. School of Computer Science and Engineering, Beihang University, Beijing 100191, China
2. Zhongguancun Laboratory, Beijing 100194, China
3. School of Software, Beihang University, Beijing 100191, China
4. School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
5. Hangzhou Innovation Institute, Beihang University, Hangzhou 310051, China
6. School of Information Engineering, China University of Geosciences, Beijing 100083, China
 Download: PDF(5693 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

As the application of Industrial Robots (IRs) scales and related participants increase, the demands for intelligent Operation and Maintenance (O&M) and multi-tenant collaboration rise. Traditional methods could no longer cover the requirements, while the Industrial Internet of Things (IIoT) has been considered a promising solution. However, there’s a lack of IIoT platforms dedicated to IR O&M, including IR maintenance, process optimization, and knowledge sharing. In this context, this paper puts forward the multi-tenant-oriented ACbot platform, which attempts to provide the first holistic IIoT-based solution for O&M of IRs. Based on an information model designed for the IR field, ACbot has implemented an application architecture with resource and microservice management across the cloud and multiple edges. On this basis, we develop four vital applications including real-time monitoring, health management, process optimization, and knowledge graph. We have deployed the ACbot platform in real-world scenarios that contain various participants, types of IRs, and processes. To date, ACbot has been accessed by 10 organizations and managed 60 industrial robots, demonstrating that the platform fulfills our expectations. Furthermore, the application results also showcase its robustness, versatility, and adaptability for developing and hosting intelligent robot applications.

Keywords IIoT platform      industrial robots      cloud-edge collaboration      intelligent applications     
Corresponding Author(s): Tianyu WO   
About author: Li Liu and Yanqing Liu contributed equally to this work.
Just Accepted Date: 10 January 2024   Issue Date: 23 April 2024
 Cite this article:   
Rui WANG,Xudong MOU,Tianyu WO, et al. ACbot: an IIoT platform for industrial robots[J]. Front. Comput. Sci., 2025, 19(4): 194203.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-024-3449-x
https://academic.hep.com.cn/fcs/EN/Y2025/V19/I4/194203
Fig.1  ACbot information model. This model design follows the UML class notation with association and inheritance relationships. The black box represents the class for tabular data and the orange box represents the class for time-series data
Fig.2  Functional architecture of ACbot. The colorless modules represent our contribution. The Scheduler serves both in the CoEngine and DeOpEngine
Fig.3  Implementation architecture of ACbot
Data transportation Device-edge Edge-cloud
Physical wiredwireless: WiFi, WIA-FA wiredwireless: 4G, 5G
Logical TCP, MQTT, OPC UA, RTSP MQTT, HTTP, WebSocket
Tab.1  Communication protocols in ACbot
Fig.4  Architecture of the health condition monitoring model. The left is the model of the 6-axis IR. The blue curves are the third axis’s position, speed, and moment data. T is the time window
Fig.5  Pareto front toward welding efficiency, quality, and energy consumption of IR. The quality of the weld is expressed by the Depth-to-Width Ratio (DWR)
Layer Equipment Number Location Description
Cloud DELL R740 Server 8 Hangzhou CPU Core 32, RAM 256 GB, SDD 960 GB, HDD 40 TB
Sugon ParaStor300S storage server 5 Hangzhou CPU Core 16, RAM 64 GB, SDD 480 GB, HDD 350 TB
NVIDIA Tesla V100 GPU 8 Hangzhou Graphics Memory 32 GB
Total 21 CPU Core 336, GPU 8, RAM 256 GB, SDD 9.8 TB, HDD 2.0 PB, Network Bandwidth 1000 Mbps
Edge Raspberry Pi 4B 2 Beijing, Binzhou CPU Core 4, RAM 8 GB, SD Card 64 GB, LAN 1
Vensin Genius P20 Industrial PC 8 Beijing, Tianjin, Shenyang, etc. CPU Core 2, RAM 8 GB, SDD 128 GB, LAN 4
Tardetech TD-MPC-1407 Industrial PC 3 Shenyang, Xiamen, etc. CPU Core 2, RAM 8 GB, SDD 128 GB, LAN 2
DELL PowerEdge T150 2 Hangzhou, Harbin CPU Core 4, RAM 16 GB, SDD 960 GB, HDD 4TB, LAN 2
Device Polishing Robot 4 Jining ROKAE XB-4s, SIASUN SRQ5C, OnRobot Sander
Weld Robot 2 Tianjin SIASUN SR10C, Yaskawa Welding Actuator
Spray Robot 1 Shenyang SIASUN SR10C, Schutze Spray Actuator
Assembly Robot 2 Harbin, Jining Epson C4, ROKAE XB-7, OnRobot MG10 Gripper
AGV 2 Tianjin SIASUN AGV
Other Robot 49 Beijing, Shenyang, Suzhou, etc. SIASUN IRs, ROKAE IRs
Sensor 3 Hangzhou, Jining OnRobot 6-axis Force Sensor, FristSensor Environment Sensor
Camera 3 Beijing, Tianjin, Hangzhou Hikvision HD Cameras
Total 66 IR 60, Actuator 15, Sensor 3, Camera 3
Tab.2  Summary of the ACbot platform configuration
Fig.6  ACbot application results. (a) FlowEditor of service orchestration; (b) IR time series; (c) IR monitoring; (d) AGV monitoring; (e) camera monitoring; (f) IR health condition monitoring; (g) IR health condition prediction; (h) Process optimization; (i) IR knowledge graph. (c), (d), and (e) are from the real-time monitoring intelligent application. (f) and (g) belong to the health management intelligent application. In (h), the upper part fits the correlation between the assembly parameters and energy consumption. In the bottom half of (h), the line graph is the correlation fitting deviation between welding parameters and objectives, and the histogram is the importance ranking of the process parameters including Speed (S), Voltage (V), Angle (A), Current (C), Length (L), and Gas flow (G)
Fig.7  Average latency and back-pressure rate of cloud-edge resource scheduling mechanisms
ACbot RoboEarth Rapyuta
Domain industrial robot service robot logistics robot
Tenant multi single single
Architecture cloud-edge-device cloud-device cloud-device
Real-time monitoring
Health management
Process optimization
Knowledge graph
SLAM
Tab.3  Summary of key features supported by ACbot vs. other platforms
  
  
  
  
  
  
  
  
  
1 M, Hägele K, Nilsson J N, Pires R Bischoff . Industrial robotics. In: Siciliano B, Khatib O, eds. Springer Handbook of Robotics. 2nd ed. Cham: Springer, 2016, 1385−1422
2 T, Borgi A, Hidri B, Neef M S Naceur . Data analytics for predictive maintenance of industrial robots. In: Proceedings of the 2017 International Conference on Advanced Systems and Electric Technologies. 2017, 412−417
3 P, Aivaliotis Z, Arkouli K, Georgoulias S Makris . Degradation curves integration in physics-based models: towards the predictive maintenance of industrial robots. Robotics and Computer-Integrated Manufacturing, 2021, 71: 102177
4 G, Köksal İ, Batmaz M C Testik . A review of data mining applications for quality improvement in manufacturing industry. Expert Systems with Applications, 2011, 38( 10): 13448–13467
5 D, Weichert P, Link A, Stoll S, Rüping S, Ihlenfeldt S Wrobel . A review of machine learning for the optimization of production processes. The International Journal of Advanced Manufacturing Technology, 2019, 104(5−8): 1889−1902
6 Y, Ding W, Xu Z, Liu Z, Zhou D T Pham . Robotic task oriented knowledge graph for human-robot collaboration in disassembly. Procedia CIRP, 2019, 83: 105–110
7 J, Deng T, Wang Z, Wang J, Zhou L Cheng . Research on event logic knowledge graph construction method of robot transmission system fault diagnosis. IEEE Access, 2022, 10: 17656–17673
8 G T, McKee P S Schenker . Networked robotics. In: Proceedings of SPIE 4196, Sensor Fusion and Decentralized Control in Robotic Systems III. 2000, 197−209
9 Schwager M, Rus D, Slotine J J. Decentralized, adaptive coverage control for networked robots. The International Journal of Robotics Research, 2009, 28(3): 357–375
10 J Kuffner . Cloud-enabled humanoid robots. In: Proceedings of the 10th IEEE-RAS International Conference on Humanoid Robots (Humanoids). 2010
11 G, Hu W P, Tay Y Wen . Cloud robotics: architecture, challenges and applications. IEEE Network, 2012, 26( 3): 21–28
12 B, Kehoe S, Patil P, Abbeel K Goldberg . A survey of research on cloud robotics and automation. IEEE Transactions on Automation Science and Engineering, 2015, 12( 2): 398–409
13 Gudi S L K C, Ojha S, Clark J, Johnston B, Williams M A. Fog robotics: an introduction. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. 2017
14 Gudi S L K C, Ojha S, Johnston B, Clark J, Williams M A. Fog robotics for efficient, fluent and robust human-robot interaction. In: Proceedings of the 17th IEEE International Symposium on Network Computing and Applications. 2018, 1−5
15 V C, Pujol S Dustdar . Fog robotics-understanding the research challenges. IEEE Internet Computing, 2021, 25( 5): 10–17
16 M, Groshev G, Baldoni L, Cominardi la Oliva A, de R Gazda . Edge robotics: are we ready? An experimental evaluation of current vision and future directions. Digital Communications and Networks, 2023, 9( 1): 166–174
17 P, Huang L, Zeng X, Chen K, Luo Z, Zhou S Yu . Edge robotics: edge-computing-accelerated multirobot simultaneous localization and mapping. IEEE Internet of Things Journal, 2022, 9( 15): 14087–14102
18 M, Waibel M, Beetz J, Civera R, D’Andrea J, Elfring D, Gálvez-López K, Häussermann R, Janssen J M M, Montiel A, Perzylo B, Schießle M, Tenorth O, Zweigle De Molengraft R Van . RoboEarth. IEEE Robotics & Automation Magazine, 2011, 18( 2): 69–82
19 G, Mohanarajah D, Hunziker R, D’Andrea M Waibel . Rapyuta: a cloud robotics platform. IEEE Transactions on Automation Science and Engineering, 2015, 12( 2): 481–493
20 L, Arnold J, Jöhnk F, Vogt N Urbach . IIoT platforms’ architectural features–a taxonomy and five prevalent archetypes. Electronic Markets, 2022, 32( 2): 927–944
21 S Schneider . The industrial internet of things (IIoT): applications and taxonomy. In: Geng H, ed. Internet of Things and Data Analytics Handbook. Hoboken: John Wiley & Sons, Inc., 2017, 41−81
22 H, Li X, Li Q Cheng . A fine-grained privacy protection data aggregation scheme for outsourcing smart grid. Frontiers of Computer Science, 2023, 17( 3): 173806
23 C, Zhou N, Damiano B, Whisner M Reyes . Industrial internet of things (IIoT) applications in underground coal mines. Mining Engineering, 2017, 69( 12): 50–56
24 A, Maatoug G, Belalem S Mahmoudi . A location-based fog computing optimization of energy management in smart buildings: DEVS modeling and design of connected objects. Frontiers of Computer Science, 2023, 17( 2): 172501
25 Y, Han C J, Zhang L, Wang Y C Zhang . Industrial IoT for intelligent steelmaking with converter mouth flame spectrum information processed by deep learning. IEEE Transactions on Industrial Informatics, 2020, 16( 4): 2640–2650
26 Wang R, Mou X, Sun J, Liu P, Guo X, Wo T, Liu X. Cloud-edge collaborative industrial robotic intelligent service platform. In: Proceedings of 2020 IEEE International Conference on Joint Cloud Computing. 2020, 71−77
27 T P, Carvalho F A A M N, Soares R, Vita R D P, Francisco J P, Basto S G S Alcalá . A systematic literature review of machine learning methods applied to predictive maintenance. Computers & Industrial Engineering, 2019, 137: 106024
28 L, Silvestri A, Forcina V, Introna A, Santolamazza V Cesarotti . Maintenance transformation through industry 4. 0 technologies: a systematic literature review. Computers in Industry, 2020, 123: 103335
29 A, Belhadi K, Zkik A, Cherrafi S M, Yusof fezazi S El . Understanding big data analytics for manufacturing processes: insights from literature review and multiple case studies. Computers & Industrial Engineering, 2019, 137: 106099
30 Qin W, Chen S, Peng M. Recent advances in industrial internet: insights and challenges. Digital Communications and Networks, 2020, 6(1): 1–13
31 M, Hermann T, Pentek B Otto . Design principles for industrie 4.0 scenarios: a literature review. Dortmund: Technische Universität Dortmund, 2015, 45
32 H, Boyes B, Hallaq J, Cunningham T Watson . The industrial internet of things (IIoT): an analysis framework. Computers in Industry, 2018, 101: 1–12
33 E, Sisinni A, Saifullah S, Han U, Jennehag M Gidlund . Industrial internet of things: challenges, opportunities, and directions. IEEE Transactions on Industrial Informatics, 2018, 14( 11): 4724–4734
34 M, Weyrich C Ebert . Reference architectures for the internet of things. IEEE Software, 2016, 33( 1): 112–116
35 H, Fathoni C T, Yang C H, Chang C Y Huang . Performance comparison of lightweight kubernetes in edge devices. In: Proceedings of the 16th International Symposium on Pervasive Systems, Algorithms and Networks. 2019, 304−309
36 Z, Tao Q, Xia Z, Hao C, Li L, Ma S, Yi Q Li . A survey of virtual machine management in edge computing. Proceedings of the IEEE, 2019, 107( 8): 1482–1499
37 Fogli M, Kudla T, Musters B, Pingen G, Van den Broek C, Bastiaansen H, Suri N, Webb S. Performance evaluation of kubernetes distributions (K8s, K3s, KubeEdge) in an adaptive and federated cloud infrastructure for disadvantaged tactical networks. In: Proceedings of 2021 International Conference on Military Communication and Information Systems (ICMCIS). 2021, 1−7
38 M, Bauer N, Bui Loof J, De C, Magerkurth A, Nettsträter J, Stefa J W Walewski . IoT reference model. In: Bassi A, Bauer M, Fiedler M, Kramp T, Kranenburg R, Lange S, Meissner S, eds. Enabling Things to Talk: Designing IoT Solutions with the IoT Architectural Reference Model. Berlin: Springer, 2013, 113−162
39 S, Yu Y, Huang T, Du Y Teng . The proposal of a modeling methodology for an industrial internet information model. PeerJ Computer Science, 2022, 8: e1150
40 Wang T, Mou X, Hu J, Wang R, Wo T. Two-stage scheduling of stream computing for industrial cloud-edge collaboration. In: Proceedings of 2022 IEEE International Conference on Joint Cloud Computing (JCC). 2022, 57−64
41 S Khoshnevis . A search-based identification of variable microservices for enterprise SaaS. Frontiers of Computer Science, 2023, 17( 3): 173208
42 J P, Dias A, Restivo H S Ferreira . Designing and constructing internet-of-things systems: an overview of the ecosystem. Internet of Things, 2022, 19: 100529
43 W, Liang M, Zheng J, Zhang H, Shi H, Yu Y, Yang S, Liu W, Yang X Zhao . WIA-FA and its applications to digital factory: a wireless network solution for factory automation. Proceedings of the IEEE, 2019, 107( 6): 1053–1073
44 Q, Li Z, Yu H, Xu B Guo . Human-machine interactive streaming anomaly detection by online self-adaptive forest. Frontiers of Computer Science, 2023, 17( 2): 172317
45 Kieu T, Yang B, Guo C, Jensen C S. Outlier detection for time series with recurrent autoencoder ensembles. In: Proceedings of the 28th International Joint Conference on Artificial Intelligence. 2019, 2725−2732
46 Mou X, Wang R, Wang T, Sun J, Li B, Wo T, Liu X. Deep autoencoding one-class time series anomaly detection. In: Proceedings of 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 2023, 1−5
47 R, Wang C, Liu X, Mou K, Gao X, Guo P, Liu T, Wo X Liu . Deep contrastive one-class time series anomaly detection. In: Proceedings of the International Conference on Data Mining. 2023, 694−702
48 Y, Lei N, Li L, Guo N, Li T, Yan J Lin . Machinery health prognostics: a systematic review from data acquisition to RUL prediction. Mechanical Systems and Signal Processing, 2018, 104: 799–834
49 S, Har-Peled B Raichel . The fréchet distance revisited and extended. ACM Transactions on Algorithms, 2014, 10( 1): 3
50 M, Zhang J Yan . A data-driven method for optimizing the energy consumption of industrial robots. Journal of Cleaner Production, 2021, 285: 124862
51 J, Yan M Zhang . A transfer-learning based energy consumption modeling method for industrial robots. Journal of Cleaner Production, 2021, 325: 129299
52 J, Qiang F, Zhang Y, Li Y, Yuan Y, Zhu X Wu . Unsupervised statistical text simplification using pre-trained language modeling for initialization. Frontiers of Computer Science, 2023, 17( 1): 171303
53 Cardellini V, Grassi V, Lo Presti F, Nardelli M. On QoS-aware scheduling of data stream applications over fog computing infrastructures. In: Proceedings of 2015 IEEE Symposium on Computers and Communication (ISCC). 2015, 271−276
[1] FCS-23449-OF-RW_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed