Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front. Comput. Sci.    2024, Vol. 18 Issue (5) : 185346    https://doi.org/10.1007/s11704-024-3922-6
Artificial Intelligence
I know I don’t know: an evidential deep learning framework for traffic classification
Shangsen LI, Lailong LUO(), Yun ZHOU, Deke GUO, Xiang XU
National Key Laboratory of Information Systems Engineering, National University of Defense Technology, Changsha 410000, China
 Download: PDF(2374 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Corresponding Author(s): Lailong LUO   
Just Accepted Date: 02 April 2024   Issue Date: 30 April 2024
 Cite this article:   
Shangsen LI,Lailong LUO,Yun ZHOU, et al. I know I don’t know: an evidential deep learning framework for traffic classification[J]. Front. Comput. Sci., 2024, 18(5): 185346.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-024-3922-6
https://academic.hep.com.cn/fcs/EN/Y2024/V18/I5/185346
Fig.1  Our proposed traffic classification framework
Fig.2  Performace of BSA_CE and BSL_CE model
Fig.3  Uncertainty estimation result of EdaTC
Fig.4  The FPR and FNR change according to θ
AUC_var θ^ FPR/FNR AUC_ent θ^ FPR/FNR AUC_mul θ^ FPR/FNR
MC_BFA 0.9169 0.179589 0.132308 0.9585 0.206277 0.100750 0.9687 0.066278 0.084974
MC_BFL 0.7324 0.168519 0.311261 0.851 0.569718 0.240739 0.9654 0.051725 0.091341
MC_BSA 0.9451 0.182269 0.089815 0.9905 0.381495 0.049791 0.9931 0.115430 0.040437
MC_BSL 0.7273 0.166945 0.283742 0.8423 0.766909 0.266439 0.9732 0.061077 0.093192
MC_MFA 0.7645 0.109668 0.283940 0.8645 0.095713 0.206909 0.9004 0.030432 0.177660
MC_MFL 0.7081 0.123277 0.331513 0.8262 0.414160 0.228796 0.8645 0.067065 0.212942
MC_MSA 0.7558 0.082487 0.294361 0.8287 0.064592 0.231472 0.8719 0.022839 0.191205
MC_MSL 0.7094 0.105639 0.314834 0.8356 0.350706 0.241975 0.8997 0.087567 0.177279
Tab.1  Unknown traffic identify result of MC_dropout
1 I, Guarino G, Aceto D, Ciuonzo A, Montieri V, Persico A Pescapè . Contextual counters and multimodal deep learning for activity-level traffic classification of mobile communication apps during COVID-19 pandemic. Computer Networks, 2022, 219: 109452
2 R, Chen L, Luo Y, Chen J, Xia D Guo . A hybrid framework for class-imbalanced classification. In: Proceedings of the 16th International Conference on Wireless Algorithms, Systems, and Applications. 2021, 301−313
3 J, Zhang X, Chen Y, Xiang W, Zhou J Wu . Robust network traffic classification. IEEE/ACM Transactions on Networking, 2015, 23( 4): 1257–1270
4 S, Le Y, Lai Y, Wang H He . An adaptive classification and updating method for unknown network traffic in open environments. Computer Networks, 2024, 238: 110114
5 J, Zhang F, Li F, Ye H Wu . Autonomous unknown-application filtering and labeling for dl-based traffic classifier update. In: Proceedings of IEEE Conference on Computer Communications. 2020, 397−405
6 M, Shen K, Ye X, Liu L, Zhu J, Kang S, Yu Q, Li K Xu . Machine learning-powered encrypted network traffic analysis: A comprehensive survey. IEEE Communications Surveys & Tutorials, 2023, 25( 1): 791–824
7 W, Wang M, Zhu X, Zeng X, Ye Y Sheng . Malware traffic classification using convolutional neural network for representation learning. In: Proceedings of 2017 International Conference on Information Networking. 2017, 712−717
8 J, Luxemburk T Čejka . Fine-grained TLS services classification with reject option. Computer Networks, 2023, 220: 109467
9 M, Sensoy L, Kaplan M Kandemir . Evidential deep learning to quantify classification uncertainty. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems. 2018, 3183−3193
10 A Jøsang . Subjective Logic: A Formalism for Reasoning Under Uncertainty. Cham: Springer, 2016
[1] FCS-23922-OF-SL_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed