Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front. Comput. Sci.    2025, Vol. 19 Issue (5) : 195909    https://doi.org/10.1007/s11704-024-40072-y
Interdisciplinary
Computational approaches for predicting drug-disease associations: a comprehensive review
Zhaoyang HUANG1, Zhichao XIAO1, Chunyan AO1,2, Lixin GUAN1, Liang YU1()
1. School of Computer Science and Technology, Xidian University, Xi’an 710071, China
2. Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China,Chengdu 611731, China
 Download: PDF(1479 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In recent decades, traditional drug research and development have been facing challenges such as high cost, long timelines, and high risks. To address these issues, many computational approaches have been proposed for predicting the relationship between drugs and diseases through drug repositioning, aiming to reduce the cost, development cycle and risks associated with developing new drugs. Researchers have explored different computational methods to predict drug-disease associations, including drug side effects-disease associations, drug-target associations, and miRNA-disease associations. In this comprehensive review, we focus on recent advances in predicting drug-disease association methods for drug repositioning. We first categorize these methods into several groups, including neural network-based algorithms, matrix-based algorithms, recommendation algorithms, link-based reasoning algorithms, and text mining and semantic reasoning. Then, we compare the prediction performance of existing drug-disease association prediction algorithms. Lastly, we discuss the current challenges and future perspectives in the field of drug-disease associations.

Keywords drug-disease association      association prediction      drug repositioning      machine learning     
Corresponding Author(s): Liang YU   
Just Accepted Date: 23 July 2024   Issue Date: 23 September 2024
 Cite this article:   
Zhaoyang HUANG,Zhichao XIAO,Chunyan AO, et al. Computational approaches for predicting drug-disease associations: a comprehensive review[J]. Front. Comput. Sci., 2025, 19(5): 195909.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-024-40072-y
https://academic.hep.com.cn/fcs/EN/Y2025/V19/I5/195909
Method Strategy Input Prediction out Advantage Disadvantage Code
GIPAE FC layerRandom forest FingerprintDrug Gaussian similarityDisease Gaussian similarityDisease semantic similarity D-D interactions Low running timesdoes not need 3D structures Complex feature representation See github.com/HanJingJiang/GIPAE website.
SKCNN CNNRandom forest Drug sigmoid kernel similarityDrug structure similarityDisease semantic similarityDisease sigmoid kernel similarity D-D interactions High accuracydoes not need 3D structures Complex feature representation See github.com/HanJingJiang/SKCNN website.
SAeRof Sparse autoencoderRandom forest Drug structure similarityDrug Gaussian similarityDisease Gaussian similarityDisease semantic similarity D-D interactions Does not need 3D structures Low accuracycomplex feature representation See github.com/HanJingJiang/SAEROF website.
GFPred Graph convolutional autoencoderFC autoencoderAttention mechanism Drug attributesDrug similarityDisease similarityD-D association D-D interactions Does not need 3D structures Low speed N
DRRS SVT algorithm Drug similarityDisease similarityD-D association D-D interactions Low running timesdoes not need 3D structures Input sparsity affects performanceclassification only See bioinformatics.csu.edu.cn/resources/softs/DrugRepositioning/DRRS/index.html website.
DNL2,1-CMF Dual-network L2,1-collaborative matrix factorization Drug similarityDisease similarity D-D interactions Low running timesdoes not need 3D structures Classification only See github.com/cuizhensdws/drug-disease-datasets website.
CMFMTL Multi-Task LearningCollective Matrix Factorization D-D association D-D interactions Does not need 3D structures Classification only See github.com/LoseHair/CMFMTL website.
DRCFFS Collaborative filtering drug chemical structuresdrug target proteinsD-D association D-D interactions Low running timesHigh accuracy Classification only N
MeSHDD Bit-wise distancerobust clusters MEDLINE repository terms D-D pairs Text input only No gold standard testing See apps.chiragjpgroup.org/MeSHDD/ website.
deepDR Random walkAutoencoder 10 types of heterogeneous networks D-D interactions High accuracy Low speed See github.com/ChengF-Lab/deepDR website.
GCN-MF GCNmatrix factorization D-G associationGene featuresDisease features D-G interactions High accuracy Low speed N
OWL Semantic Web technology PharmGKBFDA approved BCDs D-D pairs Text input only No gold standard testing N
SLAP Semantic Link Association Semantic linked data D-D interactions High accuracy Classification only N
Tab.1  Summary of the drug- disease interaction algorithm
Fig.1  The general procedure of predicting drug-disease associations based on neural network algorithms
Fig.2  The general process of drug-disease association prediction based on matrix reconstruction algorithm
Fig.3  The general process of drug-disease association prediction based on matrix factorization algorithm
Fig.4  General process of anticipating the link between drugs and illnesses using recommendation algorithm
DatasetDrugDiseaseAssociate
Cdataset6634092532
Tab.2  Cdatasets dataset
Fig.5  Comparison of different algorithms based on AUC (a) and AUPR (b) values
  
  
  
  
  
1 T T, Ashburn K B Thor . Drug repositioning: identifying and developing new uses for existing drugs. Nature Reviews Drug Discovery, 2004, 3( 8): 673–683
2 K Park . A review of computational drug repurposing. Translational and Clinical Pharmacology, 2019, 27( 2): 59–63
3 R, Su X, Liu L, Wei Q Zou . Deep-resp-forest: a deep forest model to predict anti-cancer drug response. Methods, 2019, 166: 91–102
4 M L, Shahreza N, Ghadiri S R, Mousavi J, Varshosaz J R Green . A review of network-based approaches to drug repositioning. Briefings in Bioinformatics, 2018, 19( 5): 878–892
5 T N, Jarada J G, Rokne R Alhajj . SNF-NN: computational method to predict drug-disease interactions using similarity network fusion and neural networks. BMC Bioinformatics, 2021, 22( 1): 28
6 H Q, Xue J, Li H Z, Xie Y D Wang . Review of drug repositioning approaches and resources. International Journal of Biological Sciences, 2018, 14( 10): 1232–1244
7 X W, Liu T Y, Shi D, Gao C Y, Ma H, Lin D, Yan K J Deng . iPADD: a computational tool for predicting potential antidiabetic drugs using machine learning algorithms. Journal of Chemical Information and Modeling, 2023, 63( 15): 4960–4969
8 J P, Jourdan R, Bureau C, Rochais P Dallemagne . Drug repositioning: a brief overview. Journal of Pharmacy and Pharmacology, 2020, 72( 9): 1145–1151
9 X, Zeng X, Song T, Ma X, Pan Y, Zhou Y, Hou Z, Zhang K, Li G, Karypis F Cheng . Repurpose open data to discover therapeutics for COVID-19 using deep learning. Journal of Proteome Research, 2020, 19( 11): 4624–4636
10 J, Li S, Zheng B, Chen A J, Butte S J, Swamidass Z Lu . A survey of current trends in computational drug repositioning. Briefings in Bioinformatics, 2016, 17(1): 2−12
11 X, Pan X, Lin D, Cao X, Zeng P S, Yu L, He R, Nussinov F Cheng . Deep learning for drug repurposing: methods, databases, and applications. WIREs Computational Molecular Science, 2022, 12( 4): e1597
12 R, Wang Y, Jiang J, Jin C, Yin H, Yu F, Wang J, Feng R, Su K, Nakai Q, Zou L Wei . DeepBIO: an automated and interpretable deep-learning platform for high-throughput biological sequence prediction, functional annotation and visualization analysis. Nucleic Acids Research, 2023, 51( 7): 3017–3029
13 H, Li B Liu . BioSeq-diabolo: biological sequence similarity analysis using diabolo. PLoS Computational Biology, 2023, 19( 6): e1011214
14 H, Yang H, Lv H, Ding W, Chen H Lin . iRNA-2OM: a sequence-based predictor for identifying 2’-O-methylation sites in Homo sapiens. Journal of Computational Biology, 2018, 25( 11): 1266–1277
15 H L, Li Y H, Pang B Liu . BioSeq-BLM: a platform for analyzing DNA, RNA and protein sequences based on biological language models. Nucleic Acids Research, 2021, 49( 22): e129
16 H, Luo J, Wang M, Li J, Luo P, Ni K, Zhao F X, Wu Y Pan . Computational drug repositioning with random walk on a heterogeneous network. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2019, 16( 6): 1890–1900
17 B, Wang X, Lyu J, Qu H, Sun Z, Pan Z, Tang . GNDD: a graph neural network-based method for drug-disease association prediction. In: Proceedings of 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). 2019, 1253−1255
18 K, Yang X, Zhao D, Waxman X M Zhao . Predicting drug-disease associations with heterogeneous network embedding. Chaos, 2019, 29( 12): 123109
19 Y, Wang Y, Zhai Y, Ding Q Zou . SBSM-pro: support bio-sequence machine for proteins. 2023, arXiv preprint arXiv: 2308.10275
20 C, Ai H, Yang Y, Ding J, Tang F Guo . Low rank matrix factorization algorithm based on multi-graph regularization for detecting drug-disease association. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2023, 20( 5): 3033–3043
21 P, Li P, Tiwari J, Xu Y, Qian C, Ai Y, Ding F Guo . Sparse regularized joint projection model for identifying associations of non-coding RNAs and human diseases. Knowledge-Based Systems, 2022, 258: 110044
22 X, Zeng H, Xiang L, Yu J, Wang K, Li R, Nussinov F Cheng . Accurate prediction of molecular properties and drug targets using a self-supervised image representation learning framework. Nature Machine Intelligence, 2022, 4( 11): 1004–1016
23 R, Su X, Liu G, Xiao L Wei . Meta-GDBP: a high-level stacked regression model to improve anticancer drug response prediction. Briefings in Bioinformatics, 2020, 21( 3): 996–1005
24 J, Feng S, Wu H, Yang C, Ai J, Qiao J, Xu F Guo . Microbe-bridged disease-metabolite associations identification by heterogeneous graph fusion. Briefings in Bioinformatics, 2022, 23( 6): bbac423
25 F E, Agamah J R, Bayjanov A, Niehues K F, Njoku M, Skelton G K, Mazandu T H A, Ederveen N, Mulder E R, Chimusa Hoen P A C ’t . Computational approaches for network-based integrative multi-omics analysis. Frontiers in Molecular Biosciences, 2022, 9: 967205
26 J, Xu J, Xu Y, Meng C, Lu L, Cai X, Zeng R, Nussinov F Cheng . Graph embedding and Gaussian mixture variational autoencoder network for end-to-end analysis of single-cell RNA sequencing data. Cell Reports Methods, 2023, 3( 1): 100382
27 C, Moon C, Jin X, Dong S, Abrar W, Zheng R Y, Chirkova A Tropsha . Learning drug-disease-target embedding (DDTE) from knowledge graphs to inform drug repurposing hypotheses. Journal of Biomedical Informatics, 2021, 119: 103838
28 P, Han X, Li X, Wang S, Wang C, Gao W Chen . Exploring the effects of drug, disease, and protein dependencies on biomedical named entity recognition: a comparative analysis. Frontiers in Pharmacology, 2022, 13: 1020759
29 J, Jin Y, Yu R, Wang X, Zeng C, Pang Y, Jiang Z, Li Y, Dai R, Su Q, Zou K, Nakai L Wei . iDNA-ABF: multi-scale deep biological language learning model for the interpretable prediction of DNA methylations. Genome Biology, 2022, 23( 1): 219
30 Y J, Tang Y H, Pang B Liu . IDP-Seq2Seq: identification of intrinsically disordered regions based on sequence to sequence learning. Bioinformatics, 2021, 36( 21): 5177–5186
31 Y, Yang D, Gao X, Xie J, Qin J, Li H, Lin D, Yan K Deng . DeepIDC: a prediction framework of injectable drug combination based on heterogeneous information and deep learning. Clinical Pharmacokinetics, 2022, 61( 12): 1749–1759
32 Z Y, Zhang L, Ning X, Ye Y H, Yang Y, Futamura T, Sakurai H Lin . iLoc-miRNA: extracellular/intracellular miRNA prediction using deep BiLSTM with attention mechanism. Briefings in Bioinformatics, 2022, 23( 5): bbac395
33 B, Liu X, Gao H Zhang . BioSeq-Analysis2. 0: an updated platform for analyzing DNA, RNA and protein sequences at sequence level and residue level based on machine learning approaches. Nucleic Acids Research, 2019, 47( 20): e127
34 H J, Jiang Y A, Huang Z H You . Predicting drug-disease associations via using gaussian interaction profile and kernel-based autoencoder. BioMed Research International, 2019, 2019: 2426958
35 H-J, Jiang Z-H, You Y-A Huang . Predicting drug−disease associations via sigmoid kernel-based convolutional neural networks. Journal of Translational Medicine, 2019, 17( 1): 382
36 H J, Jiang Y A, Huang Z H You . SAEROF: an ensemble approach for large-scale drug-disease association prediction by incorporating rotation forest and sparse autoencoder deep neural network. Scientific Reports, 2020, 10( 1): 4972
37 P, Xuan L, Gao N, Sheng T, Zhang T Nakaguchi . Graph convolutional autoencoder and fully-connected autoencoder with attention mechanism based method for predicting drug-disease associations. IEEE Journal of Biomedical and Health Informatics, 2021, 25( 5): 1793–1804
38 D, Bang S, Lim S, Lee S Kim . Biomedical knowledge graph learning for drug repurposing by extending guilt-by-association to multiple layers. Nature Communications, 2023, 14( 1): 3570
39 Z-H, Ren C-Q, Yu L-P, Li Z-H, You Z-W, Li S-W, Zhang X, Zeng Y F Shang . SiSGC: a drug repositioning prediction model based on heterogeneous simplifying graph convolution. Journal of Chemical Information and Modeling, 2024, 64( 1): 238–249
40 J, Wen X, Zhang E, Rush V A, Panickan X, Li T, Cai D, Zhou Y L, Ho L, Costa E, Begoli C, Hong J M, Gaziano K, Cho J, Lu K P, Liao M, Zitnik T Cai . Multimodal representation learning for predicting molecule−disease relations. Bioinformatics, 2023, 39( 2): btad085
41 S, Lei X, Lei M, Chen Y Pan . Drug repositioning based on deep sparse autoencoder and drug−disease similarity. Interdisciplinary Sciences: Computational Life Sciences, 2024, 16( 1): 160–175
42 T, Nepusz H, Yu A Paccanaro . Detecting overlapping protein complexes in protein-protein interaction networks. Nature Methods, 2012, 9( 5): 471–472
43 Driel M A, van J, Bruggeman G, Vriend H G, Brunner J A M Leunissen . A text-mining analysis of the human phenome. European Journal of Human Genetics, 2006, 14( 5): 535–542
44 R, Bro A K Smilde . Principal component analysis. Analytical Methods, 2014, 6( 9): 2812–2831
45 H, Luo M, Li S, Wang Q, Liu Y, Li J Wang . Computational drug repositioning using low-rank matrix approximation and randomized algorithms. Bioinformatics, 2018, 34( 11): 1904–1912
46 Y, Jiang R, Wang J, Feng J, Jin S, Liang Z, Li Y, Yu A, Ma R, Su Q, Zou Q, Ma L Wei . Explainable deep hypergraph learning modeling the peptide secondary structure prediction. Advanced Science, 2023, 10( 11): 2206151
47 Z, Cui Y L, Gao J X, Liu J, Wang J L, Shang L Y Dai . The computational prediction of drug-disease interactions using the dual-network L2,1-CMF method. BMC Bioinformatics, 2019, 20( 1): 5
48 G, Xie J, Li G, Gu Y, Sun Z, Lin Y, Zhu Y, Zhu W Wang . BGMSDDA: a bipartite graph diffusion algorithm with multiple similarity integration for drug-disease association prediction. Molecular Omics, 2021, 17( 6): 997–1011
49 F, Huang Y, Qiu Q, Li S, Liu F Ni . Predicting drug-disease associations via multi-task learning based on collective matrix factorization. Frontiers in Bioengineering and Biotechnology, 2020, 8: 218
50 X, Yang L, Zamit Y, Liu J He . Additional neural matrix factorization model for computational drug repositioning. BMC Bioinformatics, 2019, 20( 1): 423
51 H-T, Chang C-Y, Lin W-B, Jheng S-H, Chen H-H, Wu F-C, Tseng L C Wang . AI, please help me choose a course: building a personalized hybrid course recommendation system to assist students in choosing courses adaptively. Educational Technology & Society, 2023, 26( 1): 203–217
52 H, Wang G Yu . Persomalized recommendation system K-neighbor algorithm optimization. In: Proceedings of the 1st International Conference on Information Technologies in Education and Learning. 2016, 105−108
53 Y, Lin J, Zhang M, Lin J Li . Drug epositioning algorithm based on collaborative filtering. Journal of Nanjing University: Natural Sciences, 2015, 51( 4): 834–841
54 E, Xu Z, Yu Z, Sun B, Guo L Yao . Modeling within-basket auxiliary item recommendation with matchability and ubiquity. ACM Transactions on Intelligent Systems and Technology, 2023, 14( 3): 49
55 F, Colace D, Conte Santo M, De M, Lombardi D, Santaniello C Valentino . A content-based recommendation approach based on singular value decomposition. Connection Science, 2022, 34( 1): 2158–2176
56 A, Roy S, Banerjee M, Sarkar A, Darwish M, Elhoseny A E Hassanien . Exploring New Vista of intelligent collaborative filtering: a restaurant recommendation paradigm. Journal of Computational Science, 2018, 27: 168–182
57 Y Q, Liu S Z, Fang L Y, Wang C, Huan R X Wang . Neural graph collaborative filtering for privacy preservation based on federated transfer learning. The Electronic Library, 2022, 40( 6): 729–742
58 F, Cheng C, Liu J, Jiang W, Lu W, Li G, Liu W, Zhou J, Huang Y Tang . Prediction of drug-target interactions and drug repositioning via network-based inference. PLoS Computational Biology, 2012, 8( 5): e1002503
59 J, Zhang C D, Li Y J, Lin Y W, Shao S Z Li . Computational drug repositioning using collaborative filtering via multi-source fusion. Expert Systems with Applications, 2017, 84: 281–289
60 S, Jin Z, Niu C, Jiang W, Huang F, Xia X, Jin X, Liu X Zeng . HeTDR: drug repositioning based on heterogeneous networks and text mining. Patterns, 2021, 2( 8): 100307
61 T N, Jarada J G, Rokne R Alhajj . A review of computational drug repositioning: strategies, approaches, opportunities, challenges, and directions. Journal of Cheminformatics, 2020, 12( 1): 46
62 J, Li X, Zhu J Y Chen . Building disease-specific drug-protein connectivity maps from molecular interaction networks and pubmed abstracts. PLoS Computational Biology, 2009, 5( 7): e1000450
63 L B, Tari J H Patel . Systematic drug repurposing through text mining. In: Kumar V D, Tipney H J, eds. Biomedical Literature Mining. New York: Humana, 2014, 253−267
64 M, Rastegar-Mojarad R K, Elayavilli D, Li R, Prasad H Liu . A new method for prioritizing drug repositioning candidates extracted by literature-based discovery. In: Proceedings of 2015 IEEE International Conference on Bioinformatics and Biomedicine, 2015, 669−674
65 A S, Brown C J Patel . MeSHDD: literature-based drug-drug similarity for drug repositioning. Journal of the American Medical Informatics Association, 2017, 24( 3): 614–618
66 G A, Pavlopoulos D, Malliarakis N, Papanikolaou T, Theodosiou A J, Enright I Iliopoulos . Visualizing genome and systems biology: technologies, tools, implementation techniques and trends, past, present and future. Gigascience, 2015, 4: 38
67 X X, Zeng S Y, Zhu X R, Liu Y D, Zhou R, Nussinov F X Cheng . deepDR: a network-based deep learning approach to in silico drug repositioning. Bioinformatics, 2019, 35( 24): 5191–5198
68 P, Han P, Yang P, Zhao S, Shang Y, Liu J, Zhou X, Gao P Kalnis . GCN-MF: disease-gene association identification by graph convolutional networks and matrix factorization. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2019, 705−713
69 Q, Zhu C, Tao F, Shen C G Chute . Exploring the pharmacogenomics knowledge base (PharmGKB) for repositioning breast cancer drugs by leveraging Web ontology language (OWL) and cheminformatics approaches. In: Proceedings of Pacific Symposium on Biocomputing 2014. 2014, 172−182
70 B, Chen Y, Ding D J Wild . Assessing drug target association using semantic linked data. PLoS Computational Biology, 2012, 8( 7): e1002574
71 H, Luo J, Wang M, Li J, Luo X, Peng F-X, Wu Y Pan . Drug repositioning based on comprehensive similarity measures and Bi-Random walk algorithm. Bioinformatics, 2016, 32( 17): 2664–2671
72 D S, Wishart C, Knox A C, Guo D, Cheng S, Shrivastava D, Tzur B, Gautam M Hassanali . DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Research, 2008, 36( S1): D901–D906
73 A, Hamosh A F, Scott J, Amberger C, Bocchini D, Valle V A McKusick . Online mendelian inheritance in man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Research, 2002, 30( 1): 52–55
74 E E, Bolton Y, Wang P A, Thiessen S H Bryant . PubChem: integrated platform of small molecules and biological activities. Annual Reports in Computational Chemistry, 2008, 4: 217–241
75 Z, Sun Q, Huang Y, Yang S, Li H, Lv Y, Zhang H, Lin L Ning . PSnoD: identifying potential snoRNA-disease associations based on bounded nuclear norm regularization. Briefings in Bioinformatics, 2022, 23( 4): bbac240
76 J, Yu Z, Xuan X, Feng Q, Zou L Wang . A novel collaborative filtering model for LncRNA-disease association prediction based on the Naïve Bayesian classifier. BMC Bioinformatics, 2019, 20( 1): 396
77 R, Nie Z, Li Z-H, You W, Bao J Li . Efficient framework for predicting MiRNA-disease associations based on improved hybrid collaborative filtering. BMC Medical Informatics and Decision Making, 2021, 21( S1): 254
78 Y, Wang S, Chen N, Deng Y Wang . Drug repositioning by kernel-based integration of molecular structure, molecular activity, and phenotype data. PLoS One, 2013, 8( 11): e78518
79 A, Gottlieb G Y, Stein E, Ruppin R Sharan . PREDICT: a method for inferring novel drug indications with application to personalized medicine. Molecular Systems Biology, 2011, 7: 496
[1] Jiyu JIANG, Zonqi WAN, Tongyang LI, Meiyue SHAO, Jialin ZHANG. Shadow tomography of quantum states with prediction[J]. Front. Comput. Sci., 2025, 19(7): 197907-.
[2] Haochen ZHAO, Jian ZHONG, Xiao LIANG, Chenliang XIE, Shaokai WANG. Application of machine learning in drug side effect prediction: databases, methods, and challenges[J]. Front. Comput. Sci., 2025, 19(5): 195902-.
[3] Mengting NIU, Yaojia CHEN, Chunyu WANG, Quan ZOU, Lei XU. Computational approaches for circRNA-disease association prediction: a review[J]. Front. Comput. Sci., 2025, 19(4): 194904-.
[4] Wenzheng BAO, Bin YANG. Protein acetylation sites with complex-valued polynomial model[J]. Front. Comput. Sci., 2024, 18(3): 183904-.
[5] Yan LIN, Jiashu WANG, Xiaowei LIU, Xueqin XIE, De WU, Junjie ZHANG, Hui DING. A computational model to identify fertility-related proteins using sequence information[J]. Front. Comput. Sci., 2024, 18(1): 181902-.
[6] Bin-Bin JIA, Jun-Ying LIU, Jun-Yi HANG, Min-Ling ZHANG. Learning label-specific features for decomposition-based multi-class classification[J]. Front. Comput. Sci., 2023, 17(6): 176348-.
[7] Lerina AVERSANO, Mario Luca BERNARDI, Marta CIMITILE, Martina IAMMARINO, Debora MONTANO. Forecasting technical debt evolution in software systems: an empirical study[J]. Front. Comput. Sci., 2023, 17(3): 173210-.
[8] Zhengxiong HOU, Hong SHEN, Xingshe ZHOU, Jianhua GU, Yunlan WANG, Tianhai ZHAO. Prediction of job characteristics for intelligent resource allocation in HPC systems: a survey and future directions[J]. Front. Comput. Sci., 2022, 16(5): 165107-.
[9] Zhen SONG, Yu GU, Zhigang WANG, Ge YU. DRPS: efficient disk-resident parameter servers for distributed machine learning[J]. Front. Comput. Sci., 2022, 16(4): 164321-.
[10] Yu OU, Lang LI. Side-channel analysis attacks based on deep learning network[J]. Front. Comput. Sci., 2022, 16(2): 162303-.
[11] Suyu MEI. A framework combines supervised learning and dense subgraphs discovery to predict protein complexes[J]. Front. Comput. Sci., 2022, 16(1): 161901-.
[12] Xinyu TONG, Ziao YU, Xiaohua TIAN, Houdong GE, Xinbing WANG. Improving accuracy of automatic optical inspection with machine learning[J]. Front. Comput. Sci., 2022, 16(1): 161310-.
[13] Yi REN, Ning XU, Miaogen LING, Xin GENG. Label distribution for multimodal machine learning[J]. Front. Comput. Sci., 2022, 16(1): 161306-.
[14] Xiaobing SUN, Tianchi ZHOU, Rongcun WANG, Yucong DUAN, Lili BO, Jianming CHANG. Experience report: investigating bug fixes in machine learning frameworks/libraries[J]. Front. Comput. Sci., 2021, 15(6): 156212-.
[15] Xia-an BI, Yiming XIE, Hao WU, Luyun XU. Identification of differential brain regions in MCI progression via clustering-evolutionary weighted SVM ensemble algorithm[J]. Front. Comput. Sci., 2021, 15(6): 156903-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed