Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front. Comput. Sci.    2025, Vol. 19 Issue (5) : 195316    https://doi.org/10.1007/s11704-024-40117-2
Artificial Intelligence
Interpretation with baseline shapley value for feature groups on tree models
Fan XU, Zhi-Jian ZHOU, Jie NI, Wei GAO()
National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China School of Artificial Intelligence, Nanjing University, Nanjing 210023, China
 Download: PDF(3129 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Tree models have made an impressive progress during the past years, while an important problem is to understand how these models predict, in particular for critical applications such as finance and medicine. For this issue, most previous works measured the importance of individual features. In this work, we consider the interpretation of feature groups, which is more effective to capture intrinsic structures and correlations of multiple features. We propose the Baseline Group Shapley value (short for BGShapvalue) to calculate the importance of a feature group for tree models. We further develop a polynomial algorithm, BGShapTree, to deal with the sum of exponential terms in the BGShapvalue. The basic idea is to decompose the BGShapvalue into leaves’ weights and exploit the relationships between features and leaves. Based on this idea, we could greedily search salient feature groups with large BGShapvalues. Extensive experiments have validated the effectiveness of our approach, in comparison with state-of-the-art methods on the interpretation of tree models.

Keywords interpretability      shapley value      random forests      decision tree     
Corresponding Author(s): Wei GAO   
Just Accepted Date: 08 May 2024   Issue Date: 12 June 2024
 Cite this article:   
Fan XU,Zhi-Jian ZHOU,Jie NI, et al. Interpretation with baseline shapley value for feature groups on tree models[J]. Front. Comput. Sci., 2025, 19(5): 195316.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-024-40117-2
https://academic.hep.com.cn/fcs/EN/Y2025/V19/I5/195316
Fig.1  An illustration of four cases for Aj,Bj and Tj when AjBj=Lj. (a) Tj?AjBj; (b) Tj?AjandTj?Bj; (c) Tj?AjandTj?Bj; (d) Tj?AjandTj?Bj
  
  
Datasets #inst #feat Datasets #inst #feat
Diabetes 520 16 Har 10,299 562
Australia 690 14 Pendigits 10,992 16
Vehicle 946 18 Drybean 13,661 16
Collins 1,000 23 Eggeye 14,980 14
Phishing 1,100 30 Magic04 19,020 10
Segment 2,310 19 Bank 45,200 16
Ginaprior 3,470 784 Shuttle 58,000 9
Texture 5,500 40 Sensor 58,509 48
Mushro 8,120 22 Mnist 60,000 784
Indian 9,144 220 Fmnist 60,000 784
Tab.1  Benchmark datasets
Fig.2  Illustration of differences on salient feature groups between our approach and TreeSHAP (individual features)
DatasetsOur approachTreeSHAPACVTreeTreeInterpretLocalMDIGlobalMDISplitCountGroupSHAP
Diabetes.8382±.0331.7924±.0318?.8155±.0293?.8171±.0309?.7933±.0287?.8021±.0309?.7629±.0298?N/A
Australia.8709±.0113.8591±.0189?N/A.8517±.0174?.7965±.0298?.8180±.0317?.5077±.0505?.8602±.0248?
Vehicle.6480±.0324.6276±.0303?N/A.5961±.0376?.5361±.0291?.4334±.0407?.2956±.0395?N/A
Collins.9126±.0178.8992±.0151?.8848±.0208?.8672±.0222?.8258±.0291?.7731±.0352?.7822±.0302?N/A
Phishing.7573±.0219.7449±.0249?.7474±.0243.7428±.0243?.7165±.0267?.7333±.0312?.4647±.0486?N/A
Segment.7864±.0282.7380±.0317?N/A.6651±.0357?.6487±.0034?.6406±.0348?.3941±.0420?N/A
Ginaprior.9198±.0029.9184±.0014N/A.8056±.0264?.8266±.0215?.7621±.0253?.6397±.0347?N/A
Texture.6884±.0390.6275±.0396?5952±.0397?.5815±.0410?.5654±.0419?.5114±.0445?.4476±.0417?N/A
Mushro.9783±.0126.9766±.0141N/A.9782±.0146.9640±.0156?.9195±.0223?.8340±.0322?N/A
Indian.7806±.0348.6646±.0365?N/A.7067±.0351?.6823±.0390?.5387±.0441?.4908±.0435?N/A
Har.9796±.0020.9718±.0075?N/A.9614±.0123?.9580±.0097?.6208±.0463?.8058±.0330?N/A
Pendigits.6310±.0432.5655±.0426?.5233±.0411?.4769±.0454?.4689±.0435?.2770±.0392?.1755±.0347?N/A
Drybean.5112±.0444.5030±.0377.4487±.0407?.4767±.0410?.4665±.0439?.4253±.0438?.1488±.0.301?N/A
Eggeye.6579±.0337.5547±.0393?N/A.5816±.0408?.5123±.0348?.5092±.0474?.4971±.0232?.6405±.0170?
Magic04.5447±.0413.5207±.0374?.5172±.0396?.4944±.0415?.4737±.0339?.4314±.0396?.4540±.0362?.5224±.0406?
Bank.8356±.0271.8163±.0271?N/A.8127±.0261?.8304±.0273.8089±.0282?.8170±.0312?N/A
Shuttle.8524±.0267.7830±.0381?.8038±.0387?.7738±.0340?.7397±.0351?.7347±.0341?.5970±.0389?.8322±.0221?
Sensor.9184±.0239.8886±.0256?N/A.8391±.0284?.8154±.0340?.7089±.0408?.6597±.0367?N/A
Mnist.9499±.0010.9504±.0002N/A.8957±.0178?.8490±.0214?.8743±.0146?.8703±.0187?N/A
Fmnist.8518±.0015.7529±.0146?N/A.7239±.0129?.7143±.0012?.2732±.0217?.2261±.0229?N/A
Average.7955±.1372.7578±.1503?.7324±.1518.7092±.1551.6298±.1891.5435±.2203?
Win/tie/loss16/4/020/0/019/1/019/1/020/0/020/0/020/0/0
Tab.2  Comparisons of the testing accuracies (mean±std) for random forests classifiers. ? indicates that our approach is significantly better than the corresponding methods for the selections of salient feature groups (pairwise t-test at 95% significance level). N/A means that the corresponding method does not return results within 72 hours
Fig.3  Comparisons on the selections of salient feature groups with different cardinalities, where we scale the cardinality of salient feature groups to [0,1]. The higher the curve, the better the performance. (a) Diabetes; (b) texture; (c) pendigits; (d) eggeye; (e) magic04; (f) shuttle
Fig.4  Comparisons of the running time on 10 benchmark datasets (in seconds). Notice that the y-axis is in log-scale and full black columns imply that no result was obtained after running out 72 hours
Fig.5  Comparisons of interpretation visualization between our approach and other compared methods
Fig.6  Comparisons on different baseline combinations, where we scale the cardinality of salient feature groups to [0,1]. The higher the curve, the better the performance. (a) Texture; (b) pendigits; (c) drybean
Fig.7  Comparisons on different parameter κ, where we scale the cardinality of salient feature groups to [0,1]. The higher the curve, the better the performance. (a) Texture; (b) pendigits; (c) drybean
Datasets Our approach TreeSHAP ACVTree TreeInterpret LocalMDI GlobalMDI SplitCount GroupSHAP
Diabetes .9316±.0145 .8334±.0296? .8850±.0253? .8593±.0310? .8961±.0199? .7803±.0312? .6239±.0411? .9173±.0017?
Australia .8564±.0215 .8371±.0312? .7119±.0348? .8318±.0194? .8588±.0160 .6798±.0338? .5054±.0438? .8293±.0155?
Vehicle .6910±.0315 .6359±.0344? .6001±.0328? .6478±.0318? .5651±.0341? .4452±.0392? .2739±.0388? N/A
Collins .9805±.0022 .9798±.0016 .9519±.0129? .9755±.0046? .9686±.0014? .9655±.0182? .9518±.0028? N/A
Phishing .7623±.0320 .7616±.0275 .7283±.0346? .7343±.0299? .7013±.0294? .7124±.0337? .4327±.0501? N/A
Segment .9353±.0102 .9043±.0152? .8771±.0204? .8774±.0151? .9012±.0151? .7707±.0216? .3951±.0444? N/A
Ginaprior .8519±.0129 .8663±.0063 N/A .7750±.0270? .7668±.0272? .8704±.0045 .8737±.0043 N/A
Texture .8592±.0138 .7990±.0273? .8223±.0228? .8265±.0202? .8406±.0178? .5336±.0375? .5641±.0444? N/A
Mushro .9998±.0010 .9543±.0233? .9568±.0223? .9956±.0045? .9926±.0065? .9065±.0197? .8981±.0279? N/A
Indian .7974±.0131 .7541±.0321? N/A .6723±.0376? .6738±.0422? .4709±.0415? .5132±.0377? N/A
Har .9208±.0086 .9221±.0113 N/A .8938±.0157? .9077±.0149? .9105±.0018? .9026±.0025? N/A
Pendigits .4807±.0394 .4284±.0439? .4481±.0383? .3824±.0366? .3891±.0331? .3331±.0407? .3077±.0413? .4360±.0419
Drybean .7089±.0338 .6561±.0471? .5924±.0327? .6647±.0331? .5789±.0404? .4923±.0404? .1914±.0394? .6871±.0266?
Eggeye .6456±.0360 .6225±.0395? .5439±.0352? .6019±.0362? .5467±.0379? .5608±.0416? .4536±.0428? .6459±.0106
Magic04 .6639±.0461 .6232±.0437? .5303±.0405? .5398±.0441? .5309±.0471? .5051±.0445? .5203±.0410? .6220±.0429?
Bank .6878±.0394 .5894±.0418? .5656±.0439? .4823±.0503? .4931±.0466? .5186±.0496? .6141±.0403? .6790±.0286?
Shuttle .8721±.0305 .9271±.0207 .6764±.0361? .8607±.0304? .7987±.0259? .5671±.0446? .6728±.0261? .9018±.0262
Sensor .9426±.0169 .7174±.0311? N/A .8635±.0201? .9011±.0147? .6136±.0387? .6443±.0316? N/A
Mnist .8976±.0057 .8985±.0036 N/A .7251±.0236? .7324±.0139? .8618±.0016? .7046±.0265? N/A
Fmnist .8108±.0026 .7247±.0050? N/A .6755±.0136? .6947±.0110? .4330±.0082? .2512±.0046? N/A
Average .8148±.1306 .7716±.1428 ? .7443±.1582 .7370±.1701 .6465±.1840 .5647±.2201 ?
Win/tie/loss 14/4/2 20/0/0 20/0/0 19/1/0 19/0/1 19/0/1 17/2/1
Tab.3  Comparisons of the testing accuracies (mean±std) for individual decision trees. ?/ indicates that our approach is significantly better/worse than the corresponding methods for the selections of salient feature groups (pairwise t-test at 95% significance level). N/A means that the corresponding method does not return results within 72 hours
  
  
  
  
1 L Breiman . Random forests. Machine Learning, 2001, 45( 1): 5–32
2 T, Chen C Guestrin . XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2016, 785−794
3 Z H, Zhou J Feng . Deep forest: towards an alternative to deep neural networks. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence. 2017, 3553−3559
4 M T, Ribeiro S, Singh C Guestrin . “Why should I trust you?”: explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2016, 1135−1144
5 R M, Grath L, Costabello Van C, Le P, Sweeney F, Kamiab Z, Shen F Lecue . Interpretable credit application predictions with counterfactual explanations. 2018, arXiv preprint arXiv: 1811.05245
6 S M, Lundberg B, Nair M S, Vavilala M, Horibe M J, Eisses T, Adams D E, Liston D K W, Low S F, Newman J, Kim S I Lee . Explainable machine-learning predictions for the prevention of hypoxaemia during surgery. Nature Biomedical Engineering, 2018, 2( 10): 749–760
7 E, Tjoa C Guan . A survey on explainable artificial intelligence (XAI): toward medical XAI. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32( 11): 4793–4813
8 É, Zablocki H, Ben-Younes P, Pérez M Cord . Explainability of deep vision-based autonomous driving systems: review and challenges. International Journal of Computer Vision, 2022, 130( 10): 2425–2452
9 L, Breiman J, Friedman R A, Olshen C J Stone . Classification and Regression Trees. New York: CRC Press, 1984
10 C, Strobl A L, Boulesteix A, Zeileis T Hothorn . Bias in random forest variable importance measures: illustrations, sources and a solution. BMC Bioinformatics, 2007, 8: 25
11 G, Louppe L, Wehenkel A, Sutera P Geurts . Understanding variable importances in forests of randomized trees. In: Proceedings of the 26th International Conference on Neural Information Processing Systems. 2013, 431−439
12 A Saabas . Interpreting random forests. See interpreting-random-forests/ website, 2014
13 S J, Kazemitabar A A, Amini A, Bloniarz A Talwalkar . Variable importance using decision trees. In: Proceedings of the 31st International Conference on Neural Information Processing Systems. 2017, 425−434
14 X, Li Y, Wang S, Basu K, Kumbier B Yu . A debiased MDI feature importance measure for random forests. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems. 2019, 723
15 L S Shapley . A value for n-person games. In: Kuhn H W, Tucker A W, eds. Contributions to the Theory of Games. Princeton: Princeton University Press, 1953, 307−317
16 S M, Lundberg G, Erion H, Chen A, DeGrave J M, Prutkin B, Nair R, Katz J, Himmelfarb N, Bansal S I Lee . From local explanations to global understanding with explainable AI for trees. Nature Machine Intelligence, 2020, 2( 1): 56–67
17 M, Athanasiou K, Sfrintzeri K, Zarkogianni A C, Thanopoulou K S Nikita . An explainable XGBoost–based approach towards assessing the risk of cardiovascular disease in patients with type 2 diabetes mellitus. In: Proceedings of the 20th IEEE International Conference on Bioinformatics and Bioengineering. 2020, 859−864
18 D C, Feng W J, Wang S, Mangalathu E Taciroglu . Interpretable XGBoost-SHAP machine-learning model for shear strength prediction of squat RC walls. Journal of Structural Engineering, 2021, 147( 11): 04021173
19 A, Sutera G, Louppe V A, Huynh-Thu L, Wehenkel P Geurts . From global to local MDI variable importances for random forests and when they are Shapley values. In: Proceedings of the 35th Conference on Neural Information Processing Systems. 2021, 3533−3543
20 S I, Amoukou T, Salaün N J B Brunel . Accurate Shapley values for explaining tree-based models. In: Proceedings of the 25th International Conference on Artificial Intelligence and Statistics. 2022, 2448−2465
21 M, Sundararajan A Najmi . The many Shapley values for model explanation. In: Proceedings of the 37th International Conference on Machine Learning. 2020, 859
22 S M, Lundberg S I Lee . A unified approach to interpreting model predictions. In: Proceedings of the 31st International Conference on Neural Information Processing Systems. 2017, 4768−4777
23 J L Marichal . The influence of variables on pseudo-Boolean functions with applications to game theory and multicriteria decision making. Discrete Applied Mathematics, 2000, 107( 1-3): 139–164
24 R, Flores E, Molina J Tejada . Evaluating groups with the generalized Shapley value. 4OR, 2019, 17( 2): 141–172
25 J L, Marichal I, Kojadinovic K Fujimoto . Axiomatic characterizations of generalized values. Discrete Applied Mathematics, 2007, 155( 1): 26–43
26 M, Sundararajan A, Taly Q Yan . Axiomatic attribution for deep networks. In: Proceedings of the 34th International Conference on Machine Learning. 2017, 3319−3328
27 E, Štrumbelj I Kononenko . Explaining prediction models and individual predictions with feature contributions. Knowledge and Information Systems, 2014, 41( 3): 647–665
28 A, Datta S, Sen Y Zick . Algorithmic transparency via quantitative input influence: theory and experiments with learning systems. In: Proceedings of 2016 IEEE Symposium on Security and Privacy. 2016, 598−617
29 R, Díaz-Uriarte Andrés S A de . Gene selection and classification of microarray data using random forest. BMC Bioinformatics, 2006, 7: 3
30 H Ishwaran . Variable importance in binary regression trees and forests. Electronic Journal of Statistics, 2007, 1: 519–537
31 K J, Archer R V Kimes . Empirical characterization of random forest variable importance measures. Computational Statistics & Data Analysis, 2008, 52( 4): 2249–2260
32 C, Strobl A L, Boulesteix T, Kneib T, Augustin A Zeileis . Conditional variable importance for random forests. BMC Bioinformatics, 2008, 9: 307
33 L, Auret C Aldrich . Empirical comparison of tree ensemble variable importance measures. Chemometrics and Intelligent Laboratory Systems, 2011, 105( 2): 157–170
34 G Louppe . Understanding random forests: from theory to practice. 2014, arXiv preprint arXiv: 1407.7502
35 S, Nembrini I R, König M N Wright . The revival of the Gini importance?. Bioinformatics, 2018, 34( 21): 3711–3718
36 E Scornet . Trees, forests, and impurity-based variable importance. 2020, arXiv preprint arXiv: 2001.04295
37 O, Sagi L Rokach . Explainable decision forest: transforming a decision forest into an interpretable tree. Information Fusion, 2020, 61: 124–138
38 S, Tan M, Soloviev G, Hooker M T Wells . Tree space prototypes: another look at making tree ensembles interpretable. In: Proceedings of 2020 ACM-IMS on Foundations of Data Science Conference. 2020, 23−34
39 A, Lucic H, Oosterhuis H, Haned Rijke M de . FOCUS: flexible optimizable counterfactual explanations for tree ensembles. In: Proceedings of the 36th AAAI Conference on Artificial Intelligence. 2022, 5313−5322
40 A, Parmentier T Vidal . Optimal counterfactual explanations in tree ensembles. In: Proceedings of the 38th International Conference on Machine Learning. 2021, 8422−8431
41 S, Dutta J, Long S, Mishra C, Tilli D Magazzeni . Robust counterfactual explanations for tree-based ensembles. In: Proceedings of the 39th International Conference on Machine Learning. 2022, 5742−5756
42 A Ignatiev . Towards trustable explainable AI. In: Proceedings of the 29th International Joint Conference on Artificial Intelligence. 2020, 5154−5158
43 Y, Izza A, Ignatiev J Marques-Silva . On explaining decision trees. 2020, arXiv preprint arXiv: 2010.11034
44 Y, Izza J Marques-Silva . On explaining random forests with SAT. In: Proceedings of the 30th International Joint Conference on Artificial Intelligence. 2021, 2584−2591
45 A, Ignatiev Y, Izza P J, Stuckey J Marques-Silva . Using MaxSAT for efficient explanations of tree ensembles. In: Proceedings of the 36th AAAI Conference on Artificial Intelligence. 2022, 3776−3785
46 A, Agarwal Y S, Tan O, Ronen C, Singh B Yu . Hierarchical shrinkage: improving the accuracy and interpretability of tree-based models. In: Proceedings of the 39th International Conference on Machine Learning. 2022, 111−135
47 J Yang . Fast TreeSHAP: accelerating SHAP value computation for trees. 2021, arXiv preprint arXiv: 2109.09847
48 U Grömping . Estimators of relative importance in linear regression based on variance decomposition. The American Statistician, 2007, 61( 2): 139–147
49 Y, Sun M Sundararajan . Axiomatic attribution for multilinear functions. In: Proceedings of the 12th ACM Conference on Electronic Commerce. 2011, 177−178
50 K, Aas M, Jullum A Løland . Explaining individual predictions when features are dependent: more accurate approximations to Shapley values. Artificial Intelligence, 2021, 298: 103502
51 S L, Chau R, Hu J, Gonzalez D Sejdinovic . RKHS-SHAP: Shapley values for kernel methods. In: Proceedings of the 36th International Conference on Neural Information Processing Systems. 2022, 13050−13063
52 M, Ancona C, Oztireli M Gross . Explaining deep neural networks with a polynomial time algorithm for Shapley value approximation. In: Proceedings of the 36th International Conference on Machine Learning. 2019, 272−281
53 A, Ghorbani J Zou . Neuron Shapley: discovering the responsible neurons. In: Proceedings of the 34th International Conference on Neural Information Processing Systems. 2020, 5922−5932
54 J, Bento P, Saleiro A F, Cruz M A T, Figueiredo P Bizarro . TimeSHAP: explaining recurrent models through sequence perturbations. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. 2021, 2565−2573
55 G, Wang Y N, Chuang M, Du F, Yang Q, Zhou P, Tripathi X, Cai X Hu . Accelerating Shapley explanation via contributive cooperator selection. In: Proceedings of the 39th International Conference on Machine Learning. 2022, 22576−22590
56 L, Chen S, Lou K, Zhang J, Huang Q Zhang . HarsanyiNet: computing accurate Shapley values in a single forward propagation. In: Proceedings of the 40th International Conference on Machine Learning. 2023, 4804−4825
57 E, Štrumbelj I, Kononenko M R Šikonja . Explaining instance classifications with interactions of subsets of feature values. Data & Knowledge Engineering, 2009, 68( 10): 886–904
58 A B Owen . Sobol’ indices and Shapley value. SIAM/ASA Journal on Uncertainty Quantification, 2014, 2( 1): 245–251
59 A B, Owen C Prieur . On Shapley value for measuring importance of dependent inputs. SIAM/ASA Journal on Uncertainty Quantification, 2017, 5( 1): 986–1002
60 C, Frye C, Rowat I Feige . Asymmetric Shapley values: incorporating causal knowledge into model-agnostic explainability. In: Proceedings of the 34th International Conference on Neural Information Processing Systems. 2020, 1229−1239
61 T, Heskes E, Sijben I G, Bucur T Claassen . Causal Shapley values: exploiting causal knowledge to explain individual predictions of complex models. In: Proceedings of the 34th International Conference on Neural Information Processing Systems. 2020, 4778−4789
62 K, Dhamdhere A, Agarwal M Sundararajan . The Shapley Taylor interaction index. In: Proceedings of the 37th International Conference on Machine Learning. 2020, 9259−9268
63 I, Covert S I Lee . Improving KernelSHAP: practical Shapley value estimation using linear regression. In: Proceedings of the 24th International Conference on Artificial Intelligence and Statistics. 2021, 3457−3465
64 J D, Janizek P, Sturmfels S I Lee . Explaining explanations: axiomatic feature interactions for deep networks. The Journal of Machine Learning Research, 2021, 22( 1): 104
65 J, Wang Y, Zhang Y, Gu T K Kim . SHAQ: incorporating Shapley value theory into multi-agent Q-learning. In: Proceedings of the 36th Conference on Neural Information Processing Systems. 2022, 5941−5954
66 D, Beechey T M S, Smith Ö Şimşek . Explaining reinforcement learning with Shapley values. In: Proceedings of the 40th International Conference on Machine Learning. 2023, 2003−2014
67 J, Ren D, Zhang Y, Wang L, Chen Z, Zhou Y, Chen X, Cheng X, Wang M, Zhou J, Shi Q Zhang . Towards a unified game-theoretic view of adversarial perturbations and robustness. In: Proceedings of the 35th Conference on Neural Information Processing Systems. 2021, 3797−3810
68 S L, Chau K, Muandet D Sejdinovic . Explaining the uncertain: stochastic Shapley values for Gaussian process models. In: Proceedings of the 37th Conference on Neural Information Processing Systems. 2023, 50769−50795
69 D S, Watson J, O’Hara N, Tax R, Mudd I Guy . Explaining predictive uncertainty with information theoretic Shapley values. In: Proceedings of the 37th Conference on Neural Information Processing Systems. 2023, 7330−7350
70 D, Janzing L, Minorics P Blöbaum . Feature relevance quantification in explainable AI: a causal problem. In: Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics. 2020, 2907−2916
71 I E, Kumar S, Venkatasubramanian C, Scheidegger S A Friedler . Problems with Shapley-value-based explanations as feature importance measures. In: Proceedings of the 37th International Conference on Machine Learning. 2020, 5491−5500
72 I E, Kumar C, Scheidegger S, Venkatasubramanian S A Friedler . Shapley residuals: quantifying the limits of the Shapley value for explanations. In: Proceedings of the 35th Conference on Neural Information Processing Systems. 2021, 26598−26608
73 Y, Kwon J Zou . WeightedSHAP: analyzing and improving Shapley based feature attributions. In: Proceedings of the 36th Conference on Neural Information Processing Systems. 2022, 34363−34376
74 den Broeck G, Van A, Lykov M, Schleich D Suciu . On the tractability of SHAP explanations. In: Proceedings of the 35th AAAI Conference on Artificial Intelligence. 2021, 6505−6513
75 S, Bordt Luxburg U von . From Shapley values to generalized additive models and back. In: Proceedings of the 26th International Conference on Artificial Intelligence and Statistics. 2023, 709−745
76 M, Jullum A, Redelmeier K Aas . groupShapley: efficient prediction explanation with Shapley values for feature groups. 2021, arXiv preprint arXiv: 2106.12228
77 A, Miroshnikov K, Kotsiopoulos K, Filom A R Kannan . Stability theory of game-theoretic group feature explanations for machine learning models. 2021, arXiv preprint arXiv: 2102.10878
78 Q, Au J, Herbinger C, Stachl B, Bischl G Casalicchio . Grouped feature importance and combined features effect plot. Data Mining and Knowledge Discovery, 2022, 36( 4): 1401–1450
79 J, Vanschoren Rijn J N, van B, Bischl L Torgo . OpenML: networked science in machine learning. ACM SIGKDD Explorations Newsletter, 2014, 15( 2): 49–60
80 M, Kelly R, Longjohn K Nottingham . The UCI Machine Learning Repository. See archive.ics.uci.edu website. 2024
81 W, Samek A, Binder G, Montavon S, Lapuschkin K R Müller . Evaluating the visualization of what a deep neural network has learned. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28( 11): 2660–2673
82 S M, Lundberg G G, Erion S I Lee . Consistent individualized feature attribution for tree ensembles. 2018, arXiv preprint arXiv: 1802.03888
[1] Tao LIAN, Lin DU, Mingfu ZHAO, Chaoran CUI, Zhumin CHEN, Jun MA. Evaluating and improving the interpretability of item embeddings using item-tag relevance information[J]. Front. Comput. Sci., 2020, 14(3): 143603-.
[2] Tao SUN, Zhi-Hua ZHOU. Structural diversity for decision tree ensemble learning[J]. Front. Comput. Sci., 2018, 12(3): 560-570.
[3] Zengchang QIN, Tao WAN. Hybrid Bayesian estimation tree learning with discrete and fuzzy labels[J]. Front Comput Sci, 2013, 7(6): 852-863.
[4] Liangxiao JIANG. Learning random forests for ranking[J]. Front Comput Sci Chin, 2011, 5(1): 79-86.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed